Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



On Skin Lesion Recognition Using Deep Learning: 50 Ways to Choose Your Model
Indexado
WoS WOS:001423674400009
Scopus SCOPUS_ID:85161449757
DOI 10.1007/978-3-031-26431-3_9
Año 2023
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Skin cancer is a highly relevant health problem around the world. The World Health Organization (WHO) reports that one-third of the diagnosed cancers are skin cancer. It is well known that early detection of skin cancer significantly increases the prognosis of patients. In many cases, however, the absence of clinical devices and qualified experts makes this task very difficult. To overcome this problem, in the last years advanced deep learning techniques have been proposed to recognize skin cancer automatically showing promising results. In this work, we evaluate 50 deep learning approaches on the well-known HAM10000 dataset of dermatoscopic images from seven different skin lesion categories. The approaches have been evaluated using the same experimental protocol. In our experiments, the performance of each approach in terms of accuracy and computational time are measured. In addition, the number of trainable parameters and the number of features of the last layer of the deep learning architecture are given. Thus, comparison between the approaches can be easily established. The results showed that the best performance has been achieved by a deep learning approach based on visual transformers with 84.29% of accuracy on the testing subset. We know that these results may vary significantly on other datasets. For this reason, rather than establish which method is the best, the main contribution of this work is to make the 50 deep learning approaches available in a simple way for future research in the area. We believe that this methodology, i.e., training, testing and evaluating many deep learning methods, can be very helpful to establish which is the best architecture and what is the highest performance that can be achieved on new datasets.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Computer Science (All)
Theoretical Computer Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 MERY-QUIROZ, DOMINGO Hombre Pontificia Universidad Católica de Chile - Chile
2 Romero, Pamela Mujer Pontificia Universidad Católica de Chile - Chile
3 Garib, Gabriel Hombre Pontificia Universidad Católica de Chile - Chile
4 Pedro, Alma Mujer Pontificia Universidad Católica de Chile - Chile
5 Paz Salinas, Maria - Pontificia Universidad Católica de Chile - Chile
5 Salinas, Maria Paz Mujer Pontificia Universidad Católica de Chile - Chile
6 Sepulveda, Javiera Mujer Pontificia Universidad Católica de Chile - Chile
7 Hidalgo, Leonel Hombre Pontificia Universidad Católica de Chile - Chile
8 Prieto, Claudia Mujer Pontificia Universidad Católica de Chile - Chile
9 Navarrete-Dechent, Cristian Hombre Pontificia Universidad Católica de Chile - Chile
10 Wang, H -
11 Lin, W -
12 Manoranjan, P -
13 Xiao, G -
14 Chan, KL -
15 Wang X -
16 Ping, G -
17 Jiang, H -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Agencia Nacional de Investigación y Desarrollo
Millennium Science Initiative Program
Basal ANID
National Center for Artificial Intelligence CENIA
ANID-iHealth

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by National Center for Artificial Intelligence CENIA FB210017, Basal ANID and ANID-iHealth, Millennium Science Initiative Program ICN2021 004.
This work was supported by National Center for Artificial Intelligence CENIA FB210017, Basal ANID and ANID -iHealth, Millennium Science Initiative Program ICN2021_004.

Muestra la fuente de financiamiento declarada en la publicación.