Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Reinforcement Learning-Based Event-Triggered FCS-MPC for Power Converters
Indexado
WoS WOS:001013415800001
Scopus SCOPUS_ID:85148457925
DOI 10.1109/TIE.2023.3239865
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement learning event-triggered predictive control architecture with the help of adaptive dynamic programming technique and event-triggered mechanism subject to system uncertainties. Our development, endowed with the merits of reinforcement learning and event-triggered control as well as a predictive control solution, is able to alleviate the issues of parametric uncertainties and high switching frequency inherent in the existing scheme, while retaining the merits of the finite control-set model predictive control. Finally, this proposal is experimentally evaluated, where robust performance tests confirm the interest and applicability of the proposed control methodology.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Instruments & Instrumentation
Automation & Control Systems
Engineering, Electrical & Electronic
Scopus
Electrical And Electronic Engineering
Control And Systems Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Liu, Xing - College of Electrical Engineering, Zhejiang University - China
Zhejiang Univ - China
2 Qiu, Lin - College of Electrical Engineering, Zhejiang University - China
ZJU-UIUC Institute - China
Zhejiang Univ - China
Zhejiang Univ Univ Illinois Urbana Champaign Inst - China
3 Fang, Youtong - College of Electrical Engineering, Zhejiang University - China
Zhejiang Univ - China
4 RODRIGUEZ-PEREZ, JOSE RAMON Hombre Universidad San Sebastián - Chile
Univ San Sebastian Santiago - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China
National Key Research and Development Program of China
China Postdoctoral Science Foundation
Natural Science Foundation of Zhejiang Province
ANID
Agencia Nacional de Investigación y Desarrollo

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the National Natural Science Foundation of China under Grant 51807177 and Grant 51827810, in part by China Postdoctoral Science Foundation under Grant 2020M681855, in part by the National Key Research and Development Program of China under Grant 2022YFB4201600, and in part by Natural Science Foundation of Zhejiang Province under Grant LY21E070004 and Grant LY22E070003. The work of Jose Rodriguez was supported by ANID through projects under Grant FB0008, Grant 1210208, and Grant 1221293.
This work was supported in part by the National Natural Science Foundation of China under Grant 51807177 and Grant 51827810, in part by China Postdoctoral Science Foundation under Grant 2020M681855, in part by the National Key Research and Development Program of China under Grant 2022YFB4201600, and in part by Natural Science Foundation of Zhejiang Province under Grant LY21E070004 and Grant LY22E070003. The work of Jose Rodriguez was supported by ANID through projects under Grant FB0008, Grant 1210208, and Grant 1221293.

Muestra la fuente de financiamiento declarada en la publicación.