Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00039-018-0447-X | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We completely describe the equilibrium states of a class of potentials over the full shift which includes Falconer's singular value function for affine iterated function systems with invertible affinities. We show that the number of distinct ergodic equilibrium states of such a potential is bounded by a number depending only on the dimension, answering a question of A. Kaenmaki. We prove that all such equilibrium states are fully supported and satisfy a Gibbs inequality with respect to a suitable subadditive potential. We apply these results to demonstrate that the affinity dimension of an iterated function system with invertible affinities is always strictly reduced when any one of the maps is removed, resolving a folklore open problem in the dimension theory of self-affine fractals. We deduce a natural criterion under which the Hausdorff dimension of the attractor has the same strict reduction property.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bochi, Jairo | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 2 | Morris, Ian D. | Hombre |
Univ Surrey - Reino Unido
University of Surrey - Reino Unido |
| Fuente |
|---|
| FONDECYT |
| CONICYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Leverhulme Trust |
| Agradecimiento |
|---|
| J. Bochi: Partially supported by projects Fondecyt 1140202, 1180371, and Conicyt PIA ACT172001. I. D. Morris: Partially supported by the Leverhulme Trust (Grant No. RPG-2016-194). |
| J. Bochi: Partially supported by projects Fondecyt 1140202, 1180371, and Conicyt PIA ACT172001. I. D. Morris: Partially supported by the Leverhulme Trust (Grant No. RPG-2016-194). |