Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/S23114997 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper presents a systematic approach for solving complex prediction problems with a focus on energy efficiency. The approach involves using neural networks, specifically recurrent and sequential networks, as the main tool for prediction. In order to test the methodology, a case study was conducted in the telecommunications industry to address the problem of energy efficiency in data centers. The case study involved comparing four recurrent and sequential neural networks, including recurrent neural networks (RNNs), long short-term memory (LSTM), gated recurrent units (GRUs), and online sequential extreme learning machine (OS-ELM), to determine the best network in terms of prediction accuracy and computational time. The results show that OS-ELM outperformed the other networks in both accuracy and computational efficiency. The simulation was applied to real traffic data and showed potential energy savings of up to 12.2% in a single day. This highlights the importance of energy efficiency and the potential for the methodology to be applied to other industries. The methodology can be further developed as technology and data continue to advance, making it a promising solution for a wide range of prediction problems.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Rau, Francisco | Hombre |
Universidad de Santiago de Chile - Chile
|
| 2 | Soto, Ismael | Hombre |
Universidad de Santiago de Chile - Chile
|
| 3 | Zabala-Blanco, David | Hombre |
Universidad Católica del Maule - Chile
|
| 4 | AZURDIA-MEZA, CESAR AUGUSTO | Hombre |
Universidad de Chile - Chile
|
| 5 | Ijaz, Muhammad | Hombre |
Manchester Metropolitan Univ - Reino Unido
Manchester Metropolitan University - Reino Unido |
| 6 | Ekpo, Sunday | - |
Manchester Metropolitan Univ - Reino Unido
Manchester Metropolitan University - Reino Unido |
| 7 | GUTIERREZ-VIVANCO, SEBASTIAN | Hombre |
Universidad Autónoma de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| STIC-AmSud |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo de Fomento al Desarrollo Científico y Tecnológico |
| Universidad de Santiago de Chile |
| University of Santiago |
| Desarrollo e Innovacion |
| USACH, Proyecto Dicyt |
| Vicerrectoria de Investigacion, Desarrollo e Innovacion, FONDEF |
| Agradecimiento |
|---|
| This research received funding in Chile from USACH, Proyecto Dicyt 062117SG, Vicerrectoria de Investigacion, Desarrollo e Innovacion, FONDEF No. ID21|10191, FONDECYT Regular No. 1211132, and STIC-AmSud AMSUD220026. |
| This research received funding in Chile from USACH, Proyecto Dicyt 062117SG, Vicerrectoría de Investigación, Desarrollo e Innovación, FONDEF No. ID21|10191, FONDECYT Regular No. 1211132, and STIC-AmSud AMSUD220026. |
| This research received funding in Chile from USACH, Proyecto Dicyt 062117SG, Vicerrectoría de Investigación, Desarrollo e Innovación, FONDEF No. ID21|10191, FONDECYT Regular No. 1211132, and STIC-AmSud AMSUD220026. |