Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Banach spaces-based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem
Indexado
WoS WOS:001026151500001
Scopus SCOPUS_ID:85162855034
DOI 10.1016/J.CAMWA.2023.06.006
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this paper we introduce and analyze a Banach spaces-based approach yielding a fully-mixed finite element method for numerically solving the stationary chemotaxis-Navier-Stokes problem. This is a nonlinear coupled model representing the biological process given by the cell movement, driven by either an internal or an external chemical signal, within an incompressible fluid. In addition to the velocity and pressure of the fluid, the velocity gradient and the Bernouilli-type stress tensor are introduced as further unknowns, which allows to eliminate the pressure from the equations and compute it afterwards via a postprocessing formula. In turn, besides the cell density and the chemical signal concentration, the pseudostress associated with the former and the gradient of the latter are introduced as auxiliary unknowns as well. The resulting continuous formulation, posed in suitable Banach spaces, consists of a coupled system of three saddle point-type problems, each one of them perturbed with trilinear forms that depend on data and the unknowns of the other two. The well-posedness of it is analyzed by means of a fixed-point strategy, so that the classical Banach theorem, along with the BabuskaBrezzi theory in Banach spaces, allow to conclude, under a smallness assumption on the data, the existence of a unique solution. Adopting an analogue approach for the associated Galerkin scheme, and under suitable hypotheses on arbitrary finite element subspaces employed, we apply the Brouwer and Banach theorems to show existence and then uniqueness of the discrete solution. General a priori error estimates, including those for the postprocessed pressure, are also derived. Next, a specific set of finite element subspaces satisfying the required stability conditions, and yielding approximate local conservation of momentum, is introduced, which, given an integer ������ & GT;0, is defined in terms of Raviart-Thomas spaces of order ������ and piecewise polynomials of degree & LE;������ only. The respective rates of convergence of the resulting Galerkin method are then provided. Finally, several numerical experiments confirming the latter and illustrating the good performance of the method, are reported.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Mathematics, Applied
Scopus
Modeling And Simulation
Computational Mathematics
Computational Theory And Mathematics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Caucao, Sergio Hombre Universidad Católica de la Santísima Concepción - Chile
2 Colmenares, Eligio Hombre Universidad del Bío Bío - Chile
3 GATICA-PEREZ, GABRIEL NIBALDO Hombre Universidad de Concepción - Chile
4 Inzunza, Cristian Hombre Universidad de Concepción - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Concepción
Fondo Nacional de Desarrollo Científico y Tecnológico
Universidad Católica de la Santísima Concepción
FONDECYT Projects
Centro de Investigación en Ingeniería Matemática
CI 2 MA
Centro de Investigacion en Ingenieria Matematica (CI2MA)
Centro de Modelamiento Matematico
Agencia Nacional de Investigación y Desarrollo
ANID-Chile
Anillo of Computational Mathematics for Desalination Processes
ANID-Chile through Centro de Modelamiento Matematico
Universidad de Concepcion; and by Grupo de Investigacion en Analisis Numerico y Calculo Cientifico (GIANuC2)
Becas Chile Programm
Grupo de Investigación en Análisis Numérico y Cálculo Científico

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was supported by ANID-Chile through Centro de Modelamiento Matematico (FB210005) , Anillo of Computational Mathematics for Desalination Processes (ACT 210087) , FONDECYT projects 11220393 and 11190241, and the Becas Chile Programme for national students; by Centro de Investigacion en Ingenieria Matematica (CI2MA) , Universidad de Concepcion; and by Grupo de Investigacion en Analisis Numerico y Calculo Cientifico (GIANuC2) , Universidad Catolica de la Santisima Concepcion.
This research was supported by ANID-Chile through Centro de Modelamiento Matemático (FB210005), Anillo of Computational Mathematics for Desalination Processes (ACT 210087), FONDECYT projects 11220393 and 11190241, and the Becas Chile Programme for national students; by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción; and by Grupo de Investigación en Análisis Numérico y Cálculo Científico (GIANuC2), Universidad Católica de la Santísima Concepción.
This research was supported by ANID-Chile through Centro de Modelamiento Matemático (FB210005), Anillo of Computational Mathematics for Desalination Processes (ACT 210087), FONDECYT projects 11220393 and 11190241, and the Becas Chile Programme for national students; by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción; and by Grupo de Investigación en Análisis Numérico y Cálculo Científico (GIANuC2), Universidad Católica de la Santísima Concepción.

Muestra la fuente de financiamiento declarada en la publicación.