Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1615/SPECIALTOPICSREVPOROUSMEDIA.2023046513 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This study explains the motion of a mixed convective ternary hybrid nanofluid flow with radiation and transpiration. Ternary hybrid nanofluid is the colloidal mixture of three district types of particles, namely, Al203, single-wall CNT, and graphene. The ordinary differential equations (ODEs) of the equation is yielded by converting partial differential equations (PDEs) with the help of suitable variables for analyzing the spherical, cylindrical, and platelet nanoparticles. Then the analytical solution can be conducted by using different shapes of the nanoparticles, namely, spherical, cylindrical, and platelet, to get the solution domain. Main results on the applications of suction and results of four roots are investigated. Also by using this domain fluctuation of friction, heat and mass transfer across the flow can be analyzed with various physical parameters. Increasing knowledge of these ternary hybrid nanofluids helps to improve the heat transfer rate. This is useful in dynamics of fuel and coolant in automobiles. Furthermore, the goal and novelty of the present work mainly explains the ternary hybrid nanofluid flow with three different shapes of nanoparticles in the presence of mixed convection. The given mixed convective Navier–Stokes equations given in PDE form are converted into ODE form using suitable transformation. The analytical results are expressed in terms of Prandtl number and in terms of four roots. Finally, the impact of different shapes of nanoparticles and parameters can be discussed using a graphical scenario. The main finding is that the Dufour number is greater for more values of thermal radiation. Also, transverse and tangential velocities as well as temperature and concentration profiles are greater for more values of solution domain and Darcy number.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Vishalakshi, A. B. | - |
Davangere University - India
Davangere Univ - India |
| 2 | Mahabaleshwar, U. S. | - |
Davangere University - India
Davangere Univ - India |
| 3 | LAROZE-NAVARRETE, DAVID NICOLAS | Hombre |
Universidad de Tarapacá - Chile
|
| 4 | Zeidan, Dia | - |
German Jordanian University - Jordania
German Jordanian Univ - Jordania |
| Fuente |
|---|
| Universidad de Tarapacá |
| Instituto de Alta Investigación |
| Centro para el Desarrollo de la Nanociencia y la Nanotecnologia |
| Casilla 7D |
| German-Jordanian University |
| Davangere University |
| Instituto de Alta In-vestigación |
| Davangere University, Davangere, India |
| CEDENNA, Universidad de Tarapaca, Casilla 7D, Arica, Chile |
| German Jordanian University, Amman, Jordan |
| Agradecimiento |
|---|
| The authors acknowledge the support provided by Davangere University, Davangere, India, the Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile, and the German Jordanian University, Amman, Jordan. |
| The authors acknowledge the support provided by Davangere University, Davangere, India, the Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile, and the German Jordanian University, Amman, Jordan. |
| The authors acknowledge the support provided by Davangere University, Davangere, India, the Instituto de Alta Investigacion, CEDENNA, Universidad de Tarapaca, Casilla 7D, Arica, Chile, and the German Jordanian University, Amman, Jordan. |