Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1155/2018/7093592 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the equations of motion of the massive and massless particles in the Schwarzschild geometry of general relativity by using the Laplace-Adomian Decomposition Method, which proved to be extremely successful in obtaining series solutions to a wide range of strongly nonlinear differential and integral equations. After introducing a general formalism for the derivation of the equations of motion in arbitrary spherically symmetric static geometries and of the general mathematical formalism of the Laplace-Adomian Decomposition Method, we obtain the series solution of the geodesics equation in the Schwarzschild geometry. The truncated series solution, containing only five terms, can reproduce the exact numerical solution with a high precision. In the first order of approximation we reobtain the standard expression for the perihelion precession. We study in detail the bending angle of light by compact objects in several orders of approximation. The extension of this approach to more general geometries than the Schwarzschild one is also briefly discussed.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MAN-KWONG, Man Kwong | - |
Universidad de Atacama - Chile
|
| 2 | Leung, Chun Sing | - |
Polytech Univ Hong Kong - China
Hong Kong Polytechnic University - Hong Kong Hong Kong Polytechnic University - China The Hong Kong Polytechnic University - Hong Kong |
| 3 | Harko, Tiberiu | Hombre |
Babes Bolyai Univ - Rumania
Sun Yat Sen Univ - China UCL - Reino Unido Universitatea Babes-Bolyai din Cluj-Napoca - Rumania Sun Yat-Sen University - China Universitatea Babes-Bolyai - Rumania University College London - Reino Unido |
| Agradecimiento |
|---|
| Copyright © 2018 Man Kwong Mak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3. |