Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2022 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Clinical coding is the task of transforming medical documents into structured codes following a standard ontology. Since these terminologies are composed of hundreds of codes, this problem can be considered an Extreme Multilabel Classification task. This paper proposes a novel neural network-based architecture for clinical coding. First, we take full advantage of the hierarchical nature of ontologies to create clusters based on semantic relations. Then, we use a Matcher module to assign the probability of documents belonging to each cluster. Finally, the Ranker calculates the probability of each code considering only the documents in the cluster. This division allows a fine-grained differentiation within the cluster, which cannot be addressed using a single classifier. In addition, since most of the previous work has focused on solving this task in English, we conducted our experiments on three clinical coding corpora in Spanish. The experimental results demonstrate the effectiveness of our model, achieving state-of-the-art results on two of the three datasets. Specifically, we outperformed previous models on two subtasks of the CodiEsp shared task: CodiEsp-D (diseases) and CodiEsp-P (procedures). Automatic coding can profoundly impact healthcare by structuring critical information written in free text in electronic health records.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Barros, Jose | - |
Universidad de Chile - Chile
|
| 2 | Rojas, Matias | - |
Universidad de Chile - Chile
|
| 3 | Dunstan, Jocelyn | - |
Universidad de Chile - Chile
|
| 4 | Abeliuk, Andres | - |
Universidad de Chile - Chile
|
| Fuente |
|---|
| FONDEQUIP |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Austral de Chile |
| IMFD |
| Agencia Nacional de Investigación y Desarrollo |
| CENIA |
| Agradecimiento |
|---|
| This work was funded by ANID Chile: Basal Funds for Center of Excellence FB210005 (CMM) and FB210017 (CENIA); Millennium Science Initiative Program ICN17_002 (IMFD) and ICN2021_004 (iHealth), and Fondecyt grant 11201250. Regarding hardware, the research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02) and the Patagón supercomputer of Universidad Austral de Chile (FONDEQUIP EQM180042). |