Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.3389/FMECH.2017.00015 | ||
| Año | 2017 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A first-principles study using density functional theory and Boltzmann transport theory has been performed to evaluate the thermoelectric (TE) properties of a series of single-layer 2D materials. The compounds studied are SnSe, SnS, GeS, GeSe, SnSe2, and SnS2, all of which belong to the IV–VI chalcogenides family. The first four compounds have orthorhombic crystal structures, and the last two have hexagonal crystal structures. Solving a semi-empirical Boltzmann transport model through the BoltzTraP software, we compute the electrical properties, including Seebeck coefficient, electrical conductivity, power factor, and the electronic thermal conductivity, at three doping levels corresponding to 300 K carrier concentrations of 1018, 1019, and 1020 cm−3. The spin orbit coupling effect on these properties is evaluated and is found not to influence the results significantly. First-principles lattice dynamics combined with the iterative solution of phonon Boltzmann transport equations are used to compute the lattice thermal conductivity of these materials. It is found that these materials have narrow band gaps in the range of 0.75–1.58 eV. Based on the highest values of figure-of-merit ZT of all the materials studied, we notice that the best TE material at the temperature range studied here (300–800 K) is SnSe.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Morales-Ferreiro, J. O. | - |
University of Notre Dame - Estados Unidos
Pontificia Universidad Católica de Chile - Chile |
| 2 | Diaz-Droguett, D. E. | - |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | CELENTANO, DIEGO JAVIER | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Luo, Tengfei | - |
University of Notre Dame - Estados Unidos
|
| Fuente |
|---|
| National Science Foundation |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Pontificia Universidad Católica de Chile |
| Chilean Council for Scientific and Technological Research |
| Institute of Physics |
| Mechanical and Metallurgical Engineering Department of Pontificia Universidad Católica de Chile |
| Agradecimiento |
|---|
| We wish to thank Mechanical and Metallurgical Engineering Department of Pontificia Universidad Católica de Chile, the Physics Institute, the Research Center on Nanotechnology and Advanced Materials, CIEN-UC of Pontificia Universidad Católica de Chile, and finally thanks the support provided by the Chilean Council for Scientific and Technological Research (CONICYT). We would also like to thank the U.S. National Science Foundation grant 1433490. |