Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Daily Prediction Model of Photovoltaic Power Generation Using a Hybrid Architecture of Recurrent Neural Networks and Shallow Neural Networks
Indexado
WoS WOS:001120225600002
Scopus SCOPUS_ID:85158149878
DOI 10.1155/2023/2592405
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent years, photovoltaic energy has become one of the most implemented electricity generation options to help reduce environmental pollution suffered by the planet. Accuracy in this photovoltaic energy forecasting is essential to increase the amount of renewable energy that can be introduced to existing electrical grid systems. The objective of this work is based on developing various computational models capable of making short-term forecasting about the generation of photovoltaic energy that is generated in a solar plant. For the implementation of these models, a hybrid architecture based on recurrent neural networks (RNN) with long short-term memory (LSTM) or gated recurrent units (GRU) structure, combined with shallow artificial neural networks (ANN) with multilayer perceptron (MLP) structure, is established. RNN models have a particular configuration that makes them efficient for processing ordered data in time series. The results of this work have been obtained through controlled experiments with different configurations of its hyperparameters for hybrid RNN-ANN models. From these, the three models with the best performance are selected, and after a comparative analysis between them, the forecasting of photovoltaic energy production for the next few hours can be determined with a determination coefficient of 0.97 and root mean square error (RMSE) of 0.17. It is concluded that the proposed and implemented models are functional and capable of predicting with a high level of accuracy the photovoltaic energy production of the solar plant, based on historical data on photovoltaic energy production.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Physical
Energy & Fuels
Physics, Atomic, Molecular & Chemical
Optics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Castillo Rojas, Wilson Hombre Universidad de Atacama - Chile
2 Bekios-Calfa, Juan Hombre Universidad Católica del Norte - Chile
3 Hernández, César Hombre Universidad de Atacama - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.