Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/MNRAS/STAC3336 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present MargNet, a deep learning-based classifier for identifying stars, quasars, and compact galaxies using photometric parameters and images from the Sloan Digital Sky Survey Data Release 16 catalogue. MargNet consists of a combination of convolutional neural network and artificial neural network architectures. Using a carefully curated data set consisting of 240 000 compact objects and an additional 150 000 faint objects, the machine learns classification directly from the data, minimizing the need for human intervention. MargNet is the first classifier focusing exclusively on compact galaxies and performs better than other methods to classify compact galaxies from stars and quasars, even at fainter magnitudes. This model and feature engineering in such deep learning architectures will provide greater success in identifying objects in the ongoing and upcoming surveys, such as Dark Energy Survey and images from the Vera C. Rubin Observatory.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Chaini, Siddharth | - |
Indian Institute of Science Education and Research Bhopal - India
Indian Inst Sci Educ & Res - India |
| 2 | Bagul, Atharva | - |
Indian Institute of Science Education and Research Bhopal - India
Indian Inst Sci Educ & Res - India |
| 3 | Deshpande, Anish | - |
Indian Institute of Technology Bombay - India
Indian Inst Technol - India |
| 4 | Gondkar, Rishi | - |
Pune Institute of Computer Technology - India
Pune Inst Comp Technol - India |
| 5 | Sharma, Kaushal | - |
Instituto Milenio de Astrofísica - Chile
|
| 6 | Mariappan, Vivek | Hombre |
Indian Institute of Astrophysics - India
Indian Inst Astrophys - India |
| 7 | Kembhavi, Ajit | - |
Inter-University Centre for Astronomy and Astrophysics India - India
Inter Univ Ctr Astron & Astrophys IUCAA - India |
| Fuente |
|---|
| Universidad Nacional Autónoma de México |
| Ohio State University |
| Vanderbilt University |
| Yale University |
| Alfred P. Sloan Foundation |
| U.S. Department of Energy Office of Science |
| University of Arizona |
| Carnegie Mellon University |
| French Participation Group |
| Johns Hopkins University |
| Lawrence Berkeley National Laboratory |
| New Mexico State University |
| New York University |
| Pennsylvania State University |
| University of Portsmouth |
| University of Utah |
| University of Virginia |
| University of Washington |
| DST-SERB |
| Chilean Participation Group |
| Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo |
| Korean Participation Group |
| Leibniz Institut fur Astrophysik Potsdam (AIP) |
| Max-Planck-Institut fur Extraterrestrische Physik (MPE) |
| National Astronomical Observatories of China |
| University of Notre Dame |
| Observatario Nacional/MCTI |
| Shanghai Astronomical Observatory |
| United Kingdom Participation Group |
| University of Colorado Boulder |
| University of Oxford |
| University of Wisconsin |
| Max-PlanckInstitut fur Astrophysik (MPA Garching) |
| Center for High Performance Computing at the University of Utah |
| Instituto de Astrof'isica de Canarias |
| MaxPlanck-Institut f ur Astronomie (MPIA Heidelberg) |
| Center for Astrophysics | Harvard Smithsonian |
| Agradecimiento |
|---|
| Software: KERAS (Chollet et al. 2015), TENSORFLOW (Abadi et al. 2015), NUMPY (van der Walt, Colbert & Varoquaux 2011; Harris et al. 2020), JUPYTER (Kluyver et al. 2016), MATPLOTLIB (Hunter 2007), SEABORN (Waskom 2021), SCIKIT-LEARN (Pedregosa et al. 2011), SCIPY (Virtanen et al. 2020), PANDAS (Wes McKinney 2010; Reback et al. 2022), TQDM (da Costa-Luis et al. 2022), KERASTUNER (O'Malley et al. 2019), and PYTHON3 (Van Rossum & Drake 2009). |