Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1515/CMAM-2022-0215 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study variants of the mixed finite element method (mixed FEM) and the first-order system least-squares finite element (FOSLS) for the Poisson problem where we replace the load by a suitable regularization which permits to use H−1 loads. We prove that any bounded H−1 projector onto piecewise constants can be used to define the regularization and yields quasi-optimality of the lowest-order mixed FEM resp. FOSLS in weaker norms. Examples for the construction of such projectors are given. One is based on the adjoint of a weighted Clément quasi-interpolator. We prove that this Clément operator has second-order approximation properties. For the modified mixed method, we show optimal convergence rates of a postprocessed solution under minimal regularity assumptions—a result not valid for the lowest-order mixed FEM without regularization. Numerical examples conclude this work.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Fuhrer, Thomas | Hombre |
Facultad de Matemáticas - Chile
Pontificia Universidad Católica de Chile - Chile |