Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Exploiting Learned Policies in Focal Search
Indexado
Scopus SCOPUS_ID:85124611059
DOI
Año 2021
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Recent machine-learning approaches to deterministic search and domain-independent planning employ policy learning to speed up search. Unfortunately, when attempting to solve a search problem by successively applying a policy, no guarantees can be given on solution quality. The problem of how to effectively use a learned policy within a bounded-suboptimal search algorithm remains largely as an open question. In this paper, we propose various ways in which such policies can be integrated into Focal Search, assuming that the policy is a neural network classifier. Furthermore, we provide mathematical foundations for some of the resulting algorithms. To evaluate the resulting algorithms over a number of policies with varying accuracy, we use synthetic policies which can be generated for a target accuracy for problems where the search space can be held in memory. We evaluate our focal search variants over three benchmark domains using our synthetic approach, and on the 15-puzzle using a neural network learned using 1.5 million examples. We observe that Discrepancy Focal Search, which we show expands the node which maximizes an approximation of the probability that its corresponding path is a prefix of an optimal path, obtains, in general, the best results in terms of runtime and solution quality.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Araneda, Pablo - Pontificia Universidad Católica de Chile - Chile
2 Greco, Matias Hombre Pontificia Universidad Católica de Chile - Chile
3 BAIER-ARANDA, JORGE ANDRES Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID
National Agency for Research and Development

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We would like to thank Martin Alamos who participated in the initial part of this research. Matias Greco was supported by the National Agency for Research and Development (ANID) / Doctorado Nacional / 2019 - 21192036.

Muestra la fuente de financiamiento declarada en la publicación.