Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Predictor-Based Data-Driven Model-Free Adaptive Predictive Control of Power Converters Using Machine Learning
Indexado
WoS WOS:001002590500006
Scopus SCOPUS_ID:85139462131
DOI 10.1109/TIE.2022.3208594
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this article, a novel robust data-driven model-free predictive control framework based on the I/O data of the controlled plants, which is performed by incorporating the neural predictor-based model-free adaptive control and finite control-set model predictive control, is first proposed. The salient feature of the suggested framework is that the uncertainties, such as unmodeled dynamics and external disturbances, can be explicitly addressed in controlled systems. From a practical standpoint, however, the potential of this proposal is limited by a significantly increased online computational complexity, which makes it difficult to implement. To circumvent this limitation, a supervised imitation learning technique using data labeled is developed to imitate the known suggested controller, which the majority of the online computational burden can be transformed into offline computing by utilizing a trained artificial neural network subject to robustness characteristics. In particular, this development motivates a much simpler robust predictive control solution, which is convenient to implement in applications. Thus, by this proposal, the online implementation of much more complex predictive control strategies is made possible, and it explores a new possibility for future development of the complex control methodology. Finally, extensive simulative and experimental investigations for modular multilevel converter validate the interest and viability of the proposed design methodology.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Instruments & Instrumentation
Automation & Control Systems
Engineering, Electrical & Electronic
Scopus
Electrical And Electronic Engineering
Control And Systems Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Liu, Xing - College of Electrical Engineering, Zhejiang University - China
Zhejiang Univ - China
2 Qiu, Lin - College of Electrical Engineering, Zhejiang University - China
ZJU-UIUC Institute - China
Zhejiang Univ - China
3 Fang, Youtong - College of Electrical Engineering, Zhejiang University - China
Zhejiang Univ - China
4 RODRIGUEZ-PEREZ, JOSE RAMON Hombre Universidad San Sebastián - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China
National Key Research and Development Program of China
China Postdoctoral Science Foundation
Natural Science Foundation of Zhejiang Province

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work of Jose Rodriguez was supported by ANID through projects under Grant FB0008, Grant 1210208, and Grant 1221293. This work was supported in part by the National Natural Science Foundation of China under Grant 51807177 and Grant 51827810, in part by China Postdoctoral Science Foundation under Grant 2020M681855, in part by the National Key Research and Development Program of China under Grant 2019YFB1504603, and in part by Natural Science Foundation of Zhejiang Province under Grant LY21E070004 and Grant LY22E070003.

Muestra la fuente de financiamiento declarada en la publicación.