Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2018 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Most real-time heuristic search algorithms solve search problems by executing a series of episodes. During each episode the algorithm decides an action for execution. Such a decision is usually made using information gathered by running a bounded, heuristic-search algorithm. In this paper we report on a real-time search algorithm that does not use a search algorithm to choose the next action to be applied. Rather, it uses a neural network whose input is local information about the search graph, comparable to the information that would be used by a bounded search algorithm. We describe a supervised learning approach to training such a network. Our three types of maps from the Moving AI benchmarks, shows that our algorithm is, in some cases, substantially superior to algorithms that have access to the same information about the graph. One of our most important conclusions is that our extended set of features important: indeed, using features beyond the heuristic seems key to achieving good performance.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Munoz, Franco | - |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Fadic, Miguel | - |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | HERNANDEZ-ULLOA, CARLOS MARCELO | Hombre |
Universidad Nacional Andrés Bello - Chile
|
| 4 | BAIER-ARANDA, JORGE ANDRES | Hombre |
Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile |