Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1063/5.0133188 | ||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This work describes the percolation phenomena in different structures through deep neural networks and previously calculated statistical data of percolation. Despite being relatively simple and easy to calculate at small scales, the percolation process is computationally time-consuming at large scales; here, a significant computation is necessary to determine if a cluster percolates or not. We propose to train deep neural networks on small systems and scale to large systems. Our results show a reasonable accuracy rate on recognition of images, particularly on fully convolutional neural networks for the continuum case, a recent improvement on classical convolutional neural networks, improving the recognition of percolation phenomena, portability, and scalability.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Iriarte, Esteban | - |
Universidad Nacional Andrés Bello - Chile
|
| 2 | PERALTA-CAMPOSANO, JOAQUIN ANDRES | Hombre |
Universidad Nacional Andrés Bello - Chile
|
| 3 | LOYOLA-CANALES, CLAUDIA CRISTINA | Mujer |
Universidad Nacional Andrés Bello - Chile
|
| 4 | DAVIS-IRARRAZABAL, SERGIO MICHAEL | Hombre |
Universidad Nacional Andrés Bello - Chile
Comision Chilena de Energia Nuclear - Chile |
| Agradecimiento |
|---|
| The authors acknowledge financial support from Proyecto Interno DI-13-20/REG (UNAB). SD also acknowledges funding from ANID FONDECYT 1171127 grant, and ANID PIA ACT172101 grant. Computational work was supported by the supercomputing infrastructures of the NLHPC (ECM-02), and FENIX (UNAB). |