Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1063/5.0133195 | ||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work, a well defined procedure to assign a probability distribution to a score is presented. By considering a score 0 ≤ t ≤ 1 and using Bayesian inference together with Jaynes' Maximum Entropy Principle, we are able to assign an estimation to the score based on the available information. In order to correctly define a score t, we assume a resolution Δt that enables us to assign a a score t∗ so that t∗ -Δt/2 ≤ t ≤ t∗ + Δt/2 with a confidence p, and infer the parameters of the maximum entropy distribution as a function of p and t∗. This framework may provide insights on how to state problems with uncertain evaluation of performance in learning in several contexts.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | DAVIS-IRARRAZABAL, SERGIO MICHAEL | Hombre |
Comision Chilena de Energia Nuclear - Chile
Universidad Nacional Andrés Bello - Chile |
| 2 | LOYOLA-CANALES, CLAUDIA CRISTINA | Mujer |
Universidad Nacional Andrés Bello - Chile
|
| 3 | PERALTA-CAMPOSANO, JOAQUIN ANDRES | Hombre |
Universidad Nacional Andrés Bello - Chile
|
| Fuente |
|---|
| Universidad Andrés Bello |
| ANID Fondecyt |
| Agencia Nacional de Investigación y Desarrollo |
| FENIX |
| Agradecimiento |
|---|
| The authors acknowledge financial support from ANID FONDECYT 1171127 grant. SD also acknowledges financial support from ANID PIA ACT172101 grant. CL acknowledges financial support from proyecto interno DI-13-20/REG (UNAB). Computational work was supported by the supercomputing infrastructures of the NLHPC (ECM-02), and FENIX (UNAB). |