Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/CLEI52000.2020.00008 | ||||
| Año | 2021 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
One of the main problems in chilean beekeeping is the late diseases diagnosis that affects beehives. In this work, convolutional neuronal networks are used to create a system that detect beehives health by classifying the sound they emit represented by spectrograms. A dataset is made from audio registers recorded in Chile. From this data, two models for beehives classification are elaborated with different architectures. The model implemented through Transfer Learning obtains a high percentage of accuracy (0.9303 in validation) at classifying recordings according to their health condition, which is comparable to other related publications about Machine Learning applied in beekeeping.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Child, Tomas | Hombre |
Universidad de Santiago de Chile - Chile
|
| 2 | ACUÑA-LEIVA, GONZALO PEDRO | Hombre |
Universidad de Santiago de Chile - Chile
|
| 3 | IEEE | Corporación |