Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/IMRN/RNAD050 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Our main result is the following: let X be a normal affine toric surface without torus factor. Then there exists a non-normal affine toric surface X' with automorphism group isomorphic to the automorphism group of X if and only if X is different from the affine plane. As a tool, we first provide a classification of normalized additive group actions on a non-necessarily normal affine toric variety X of any dimension. Recall that normalized additive group actions on X are in correspondence with homogeneous locally nilpotent derivations on the algebra of regular functions of X. More generally, we provide a classification of homogeneous locally nilpotent derivations on the semigroup algebra of a commutative cancellative monoid.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | DIAZ-MARTINEZ, ROBERTO CARLOS | Hombre |
Universidad de Talca - Chile
|
| 2 | Liendo, A | Hombre |
Universidad de Talca - Chile
|
| Fuente |
|---|
| FONDECYT |
| CONICYT-PFCHA |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Doctorado Nacional |
| CONICYT-PFCHA/Doctorado Nacional/2016-folio |
| 2016-folio |
| Agradecimiento |
|---|
| Acknowledgments We would like to thank Andriy Regeta for valuable suggestions on applying Lemma 4.9 to prove Theorem 4.5. We would also like to thanks both referees. Their reports helped us to improve the quality of this paper and correct inaccuracies. |
| This work was partially supported by the CONICYT-PFCHA/Doctorado Nacional/2016-folio [21161165 to R.D.]; and the Fondecyt [1200502 to A.L.]. Acknowledgments |