Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Decision support for technology transfer using fuzzy quality function deployment and a fuzzy inference system
Indexado
WoS WOS:000980903000067
Scopus SCOPUS_ID:85166390957
DOI 10.3233/JIFS-222232
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Technology transfer plays an essential role in developing an organization's capabilities to perform better in the market. Several protocols are defined for technology transfer. One of the main techniques in technology transfer is licensing, which significantly impacts profit and income. This study intends to develop a decision framework that integrates both a Fuzzy Inference System (FIS) and a two steps Fuzzy Quality Function Deployment (F-QFD) to assist an organization in selecting a licensor. To illustrate the decision framework's performance, it has been implemented in an Iranian lubricant producer to select the best licensor among the 13 targeted companies. A complete product portfolio, brand image enhancement, increasing the market share of the high-value products, and improving the technical knowledge of manufacturing products were identified as the most important expectations of the licensees. A sensitivity analysis for the recommended framework has been conducted. For doing so, 27 rules of the FIS were categorized into four group and then changed. The results are compared using the Pearson correlation coefficient. Inference rules detect unconventional changes, while logical changes are appropriately considered.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Scopus
Artificial Intelligence
Engineering (All)
Statistics And Probability
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Sarfaraz, Amir Homayoun Hombre Islamic Azad Univ - Iran
Islamic Azad University, North Tehran Branch - Iran
Islamic Azad University, South Tehran Branch - Iran
2 Yazdi, Amir Karbassi Hombre Universidad Católica del Norte - Chile
3 Hanne, Thomas Hombre Univ Appl Sci & Arts Northwestern Switzerland - Suiza
Fachhochschule Nordwestschweiz FHNW - Suiza
4 Hosseini, Raheleh Sadat - Islamic Azad Univ - Iran
Islamic Azad University, North Tehran Branch - Iran

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.