Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/SYM10070252 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The total graph of G, T(G) is the graph whose vertex set is the union of the sets of vertices and edges of G, where two vertices are adjacent if and only if they stand for either incident or adjacent elements in G. For k <= 2, the k-th iterated total graph of G, T-k(G), is defined recursively as T-k(G) = T(Tk-1(G)), where T-1(G) = T(G) and T-0(G) = G. If G is a connected graph, its diameter is the maximum distance between any pair of vertices in G. The incidence energy IE(G) of G is the sum of the singular values of the incidence matrix of G. In this paper, for a given integer k we establish a necessary and sufficient condition under which diam(Tr+1(G)) > k - r,r <= 0. In addition, bounds for the incidence energy of the iterated graph Tr+1(G) are obtained, provided G is a regular graph. Finally, new families of non-isomorphic cospectral graphs are exhibited.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Lenes, Eber | - |
Univ Sinu - Colombia
Universidad del Sinú - Colombia |
| 2 | Mallea-Zepeda, Exequiel | - |
Universidad de Tarapacá - Chile
|
| 3 | ROBBIANO-BUSTAMANTE, MARIA ROSARIO | Mujer |
Universidad Católica del Norte - Chile
|
| 4 | Rodriguez, Jonnathan | - |
Universidad Católica del Norte - Chile
|
| Fuente |
|---|
| Departamento de Investigaciones of the Universidad del Sinu, Colombia |
| project VRIDT UCN |
| Proyecto UTA-Mayor, Universidad de Tarapaca, Chile |
| Agradecimiento |
|---|
| Eber Lenes was supported by Departamento de Investigaciones of the Universidad del Sinu, Colombia, Exequiel Mallea-Zepeda was supported by Proyecto UTA-Mayor 4740-18, Universidad de Tarapaca, Chile and Maria Robbiano was partially supported by project VRIDT UCN 170403003. The authors express their gratitude to professor Ricardo Reyes of Universidad de Tarapaca for his valuable corrections and suggestions in the translation of the manuscript into english language. |