Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/PESGM48719.2022.9916732 | ||
| Año | 2022 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper proposes the use of Artificial Neural Networks (ANN) for the efficient bidding of a Photovoltaic power plant with Energy Storage System (PV-ESS) participating in Day-Ahead (DA) and Real-Time (RT) energy and reserve markets under uncertainty. The Energy Management System (EMS) is based on Multi-Agent Deep Reinforcement Learning (MADRL). The MADRL scheme aims to maximize the profit of the hybrid PV-ESS plant through an efficient bidding in both markets. Results show that the MADRL framework can fulfill both the financial and physical constraints faced by the PV-ESS plant while providing energy and ancillary services. Daily market incomes have comparable mean values regarding traditional optimization approaches (average value of 1839 USD), but with a 45.3% smaller variance. Furthermore, it maintains a reference-tracking performance of 86.63% for one-year-round participation, against a 73.05% and 79.13% performance obtained with scenario-based robust and stochastic programming implementations, respectively.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ochoa, Tomas | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Gil, Esteban | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | Angulo, Alejandro | Hombre |
Universidad Técnica Federico Santa María - Chile
|