Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Hippocampal dendritic spines express the RyR3 but not the RyR2 ryanodine receptor isoform
Indexado
WoS WOS:001044931600027
Scopus SCOPUS_ID:85141252742
DOI 10.1016/J.BBRC.2022.10.024
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The hippocampus is a brain region implicated in synaptic plasticity and memory formation; both processes require neuronal Ca2+ signals generated by Ca2+ entry via plasma membrane Ca2+ channels and Ca2+ release from the endoplasmic reticulum (ER). Through Ca2+-induced Ca2+ release, the ER-resident ryanodine receptor (RyR) Ca2+ channels amplify and propagate Ca2+ entry signals, leading to activation of cytoplasmic and nuclear Ca2+-dependent signaling pathways required for synaptic plasticity and memory processes. Earlier reports have shown that mice and rat hippocampus expresses mainly the RyR2 isoform, with lower expression levels of the RyR3 isoform and almost undetectable levels of the RyR1 isoform; both the RyR2 and RyR3 isoforms have central roles in synaptic plasticity and hippocampal-dependent memory processes. Here, we describe that dendritic spines of rat primary hippocampal neurons express the RyR3 channel isoform, which is also expressed in the neuronal body and neurites. In contrast, the RyR2 isoform, which is widely expressed in the neuronal body and neurites of primary hippocampal neurons, is absent from the dendritic spines. We propose that this asymmetric distribution is of relevance for hippocampal neuronal function. We suggest that the RyR3 isoform amplifies activity-generated Ca2+ entry signals at postsynaptic dendritic spines, from where they propagate to the dendrite and activate primarily RyR2-mediated Ca2+ release, leading to Ca2+ signal propagation into the soma and the nucleus where they activate the expression of genes that mediate synaptic plasticity and memory.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biochemistry & Molecular Biology
Biophysics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Vega-Vasquez, Ignacio Hombre Universidad de Chile - Chile
2 Lobos, P. Hombre Universidad de Chile - Chile
3 TOLEDO-ALONSO, JORGE ROBERTO Hombre Universidad de Chile - Chile
4 ADASME-ROCHA, TATIANA MARLENE Mujer Universidad de Chile - Chile
5 ANDREA, CRISTINA PAULA-LIMA Mujer Universidad de Chile - Chile
Interuniversity Center for Healthy Aging (CIES) - Chile
Interuniv Ctr Healthy Aging CIES - Chile
6 HIDALGO-TAPIA, MARIA CECILIA Mujer Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDEQUIP
CONICYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
German Federal Ministry of Education and Research
Chilean Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT)
Bundesministerium für Bildung und Forschung
Biomedical Neuroscience Institute (BNI)
Fondo de Equipamiento Cientifico y Tecnologico
Chilean Fondo de Equipamiento Cientifico y Tecnologico (FONDEQUIP)
Institute of Biomedical Science
Interuniversity Center for Healthy Aging
Chilean Scientific Millennium Initiative

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by the Biomedical Neuroscience Institute (BNI) (grant P09-015F ), Chilean Scientific Millennium Initiative and by the German Federal Ministry of Education and Research (grant BMBF180051 ); the Chilean Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT grants 1150736 , 1170053 and 1190958 ), by CONICYT (Ph.D. scholarship 21161086 ), the Interuniversity Center for Healthy Aging , Code RED211993 and by the Chilean Fondo de Equipamiento Científico y Tecnológico (FONDEQUIP grants EQM120164 , 140119 and 140156 ). The excellent technical help of Ms. Nicole Henriquez is gratefully acknowledged.
This work was supported by the Biomedical Neuroscience Institute (BNI) (grant P09-015F), Chilean Scientific Millennium Initiative and by the German Federal Ministry of Education and Research (grant BMBF180051); the Chilean Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT grants 1150736, 1170053 and 1190958), by CONICYT (Ph.D. scholarship 21161086), the Interuniversity Center for Healthy Aging, Code RED211993 and by the Chilean Fondo de Equipamiento Cientifico y Tecnologico (FONDEQUIP grants EQM120164,140119 and 140156). The excellent technical help of Ms. Nicole Henriquez is gratefully acknowledged.

Muestra la fuente de financiamiento declarada en la publicación.