Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1016/B978-0-12-818833-0.00009-6 | ||
| Año | 2020 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The manual inspection of intravascular ultrasound (IVUS) images to detect clinically relevant patterns is a difficult and laborious task performed routinely by physicians. In this chapter, we have investigated the use of deep convolutional nets for the quick selection of IVUS frames containing calcified plaque, a pattern whose analysis plays a vital role in the diagnosis of atherosclerosis. Our networks are designed to detect an entire segment of an IVUS sequence as clinically relevant for the pattern of interest. A sequence-based postprocessing is applied to the network outputs exploiting prior knowledge on the temporal behavior of the ground-truth signals. Our preliminary experiments on a dataset acquired from 80 patients and annotated by one specialist showed that deep convolutional architectures improve on a shallow classifier by a significant margin.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ñanculef, Ricardo | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Radeva, Petia | - |
Universitat de Barcelona - España
Centre de Visió per Computador - España |
| 3 | Balocco, Simone | Mujer |
Universitat de Barcelona - España
Centre de Visió per Computador - España |