Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.2422/2036-2145.201901_012 | ||
| Año | 2020 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The second Painlevé O.D.E. y00 - xy - 2y3 = 0, x 2 R, is known to play an important role in the theory of integrable systems, random matrices, Bose-Einstein condensates and other problems. The generalized second Painlevé equation Δy -x1 y -2y3 = 0, (x1, x2) 2 R2, is obtained by multiplying by -x1 the linear term u of the Allen-Cahn equation Δ= u3 - u. It involves a non autonomous potential H(x1, y) which is bistable for every fixed x1 < 0, and thus describes as the Allen-Cahn equation a phase transition model. The scope of this paper is to construct a solution y connecting along the vertical direction x2, the two branches of minima of H parametrized by x1. This solution plays a similar role that the heteroclinic orbit for the Allen-Cahn equation. It is the the first to our knowledge solution of the Painlevé P.D.E. both relevant from the applications point of view (liquid crystals), and mathematically interesting.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CLERC, MARCEL G. | Hombre |
Universidad de Chile - Chile
|
| 2 | KOWALCZYK, MICHA L. | Hombre |
Universidad de Chile - Chile
|
| 3 | Smyrnelis, Panayotis | Mujer |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Basal AFB170001 CMM-Chile |
| Agradecimiento |
|---|
| M. G. Clerc was partially supported by Fondecyt 1180903. M. Kowalczyk was partially supported by Chilean research grants Fondecyt 1130126 and 1170164, Fondo Basal AFB170001 CMM-Chile. P. Smyrnelis was partially supported by Fondo Basal AFB170001 CMM-Chile and Fondecyt postdoctoral grant 3160055. Received January 22, 2019; accepted in revised form April 30, 2019. Published online December 2020. |