Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Long short-term memory network for future-state prediction in water injection pump
Indexado
Scopus SCOPUS_ID:85107277344
DOI 10.3850/978-981-14-8593-0_3831-CD
Año 2020
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Water injection into an oil well increases pressure in the reservoir, preventing its rapid decline in oil recovery. Failure of the injection pump can compromise oil production for as long as it is stopped. Therefore, anticipating failures in advance and adopting predictive maintenance policies will make their availability higher than current values. One approach to do this is by Condition-Based Maintenance (CBM), in which assets are continuously monitored to determine their health state. The obtained data is analyzed to identify and predict failures. Maintenance planning is done according to these results. In recent years, Machine Learning (ML) and Deep Learning (DL) techniques have been used in the context of CBM, since they can deal with large amounts of data. They have the ability to identify complex patterns in the data that provide relevant information regarding the state of the equipment. Amongst DL algorithms, Long Short-Term Memory Networks (LSTM) stand out for being used to deal with time dependencies within the data. This paper presents a model for predicting the operating state of a water inject ion pump using LSTM. When predicting failures within one day, all performance metrics (precision, recall and F1-score) reach values above 92.0%. Model is compared with an Artificial Neural Network (ANN). Future works include doing remaining useful life (RUL) predictions.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Barraza, Joaquín Figueroa Hombre Universidade de São Paulo - Brasil
2 Bräuning, Luis Felipe Guarda Hombre Universidade de São Paulo - Brasil
3 Droguett, Enrique López Hombre Universidad de Chile - Chile
4 Martins, Marcelo Ramos Hombre Universidade de São Paulo - Brasil

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Conselho Nacional de Desenvolvimento Científico e Tecnológico

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The last author gratefully wishes to acknowledge his support by the Brazilian National Council for Scientific and Technological Development (CNPq) through grant 304533/2016-5.

Muestra la fuente de financiamiento declarada en la publicación.