Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Application of long short-term memory neural networks for co2 concentration forecast on amine plants
Indexado
Scopus SCOPUS_ID:85107265168
DOI 10.3850/978-981-14-8593-0_4474-CD
Año 2020
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In face of climate change and the need to implement environmentally friendly industrial processes, Carbon Capture and Storage (CCS), has been gaining increasing importance. Particularly in the Oil and Gas industry, CO2 removal or absorption through amines plays a prominent role in combustible gases as it is an efficient solution for the treatment of diluted gas streams and for its attractive cost /benefit ratio. Despite its popularity, the process of removal of CO2 by amines presents several technical challenges, among which stands out the balance between temperature, pressure and amine concentration in order to obtain the maximum absorption efficiency in the process. On the other hand, the Internet of Things era enables oil and gas companies to manage and store operational data in real time and, in this perspective, operational efficiency improvement aided by technology has become a mandatory management line. In this context, the brand new Deep Learning algorithms allows to integrate and to analyse high volumes of data to find patterns that can be used for decision making models providing costs reduction, processes optimizing and overall performance improvement. The present work explores the application of the Long Short-Term Memory (LSTM) Neural Network methodology for CO2 concentrations forecasting. The data used was provided by an Oil and Gas company operating in Brazil and was extracted from the regular operations of one of their amine plants. The developed algorithm is able to forecast the CO2 concentrations of the treated gas in an interval of time ranging from 20 minutes to 3 hours.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Brauning, Luis Felipe Guarda Hombre Universidade de São Paulo - Brasil
2 Morais, Carlos Henrique Bittencourt Hombre Universidade de São Paulo - Brasil
3 Barraza, Joaquin Eduardo Figueroa - Universidade de São Paulo - Brasil
4 Martins, Marcelo Ramos Hombre Universidade de São Paulo - Brasil
5 Droguett, Enrique Lopez Hombre Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Conselho Nacional de Desenvolvimento Científico e Tecnológico

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The last author from USP gratefully wishes to acknowledge his support by the Brazilian National Council for Scientific and Technological Development (CNPq) through grant 304533/2016-5.

Muestra la fuente de financiamiento declarada en la publicación.