Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/LATINCOM53176.2021.9647788 | ||||
| Año | 2021 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
As Internet Service Providers (ISPs) integrate the fifth generation (5G) technology standard for cellular broadband systems, they may face bursts of network traffic due to the future numerous connections. In this sense, our paper is focused on predicting traffic peaks via deep learning techniques, such as Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) of a real mobile core EPC node located in Chile. The results show that LSTM outperforms GRU in terms of traffic prediction by factor of 0.4 and in terms of computational cost, LSTM and GRU have identical behavior.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Rau, Francisco | Hombre |
Universidad de Santiago de Chile - Chile
|
| 2 | Soto, Ismael | Hombre |
Universidad de Santiago de Chile - Chile
|
| 3 | Zabala-Blanco, David | Hombre |
Universidad Católica del Maule - Chile
|
| 4 | Velazquez, R | - |
| Fuente |
|---|
| Fondef |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondecyt Regular |
| Fondo de Fomento al Desarrollo Científico y Tecnológico |
| Agradecimiento |
|---|
| This research received funding in Chile from Project Dicyt062117S, FONDEF No. ID21I10191, FONDECYT Regular No. 1211132, FONDECYT Regular No. 1200810, and Partially funded by UCM-IN-21200 internal grant. |
| ACKNOWLEDGMENT This research received funding in Chile from Project Dicyt-062117S, FONDEF No. ID21I10191, FONDECYT Regular No. 1211132, FONDECYT Regular No. 1200810, and Partially funded by UCM-IN-21200 internal grant. |