Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Differentially Private Stochastic Optimization: New Results in Convex and Non-Convex Settings
Indexado
WoS WOS:000901616407046
Scopus SCOPUS_ID:85131835427
DOI
Año 2021
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We study differentially private stochastic optimization in convex and non-convex settings. For the convex case, we focus on the family of non-smooth generalized linear losses (GLLs). Our algorithm for the l(2) setting achieves optimal excess population risk in near-linear time, while the best known differentially private algorithms for general convex losses run in super-linear time. Our algorithm for the l(1) setting has nearly-optimal excess population risk (O) over tilde (root logd/n epsilon), and circumvents the dimension dependent lower bound of [AFKT21] for general non-smooth convex losses. In the differentially private non-convex setting, we provide several new algorithms for approximating stationary points of the population risk. For the l1-case with smooth losses and polyhedral constraint, we provide the first nearly dimension independent rate, (O) over tilde (log2/3 d/(n epsilon)1/3) in linear time. For the constrained l(2)-case with smooth losses, we obtain a linear-time algorithm with rate (O) over tilde (1/n(1/3) + d(1/5)/(n epsilon)2/5) . Finally, for the l(2)-case we provide the first method for non-smooth weakly convex stochastic optimization with rate (O) over tilde (1/n(1/4) + d(1/6) (n epsilon)(1/3)) which matches the best existing non-private algorithm when d = O(root n). We also extend all our results above for the non-convex l(2) setting to the l p setting, where 1 < p <= 2, with only polylogarithmic (in the dimension) overhead in the rates.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Bassily, Raef - OHIO STATE UNIV - Estados Unidos
The Ohio State University - Estados Unidos
College of Engineering - Estados Unidos
2 Guzman, Cristobal Hombre Univ Twente - Países Bajos
Pontificia Universidad Católica de Chile - Chile
Universiteit Twente - Países Bajos
3 Menart, Michael Hombre OHIO STATE UNIV - Estados Unidos
The Ohio State University - Estados Unidos
College of Engineering - Estados Unidos
4 Ranzato, M -
5 Beygelzimer, A -
6 Dauphin, Y -
7 Liang, PS -
8 Vaughan, JW -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
National Science Foundation
Fondo Nacional de Desarrollo Científico y Tecnológico
NSF
Ohio State University
Google
Institut national de recherche en informatique et en automatique (INRIA)
INRIA through the INRIA Associate Teams project
OSU faculty start-up support
Google Faculty Research Award

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
RB's and MM's research is supported by NSF Award AF-1908281, Google Faculty Research Award, and the OSU faculty start-up support. CG's research is partially supported by INRIA through the INRIA Associate Teams project and FONDECYT 1210362 project.
RB’s and MM’s research is supported by NSF Award AF-1908281, Google Faculty Research Award, and the OSU faculty start-up support. CG’s research is partially supported by INRIA through the INRIA Associate Teams project and FONDECYT 1210362 project.

Muestra la fuente de financiamiento declarada en la publicación.