Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/LA-CCI48322.2021.9769793 | ||||
| Año | 2021 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Metaheuristics have been successfully applied to solve complex real-world problems in many application domains. Their performance strongly depends on the values of their parameters. Many tuning algorithms have already been proposed to find a set of suitable values. However, the amount of computational time required to obtain these values is usually high. Our goal is to propose a collaborative strategy to help to reduce the configuration effort during the tuning process. Here, we introduce a novel initialization strategy that learns from poor quality configurations in a pre-processing phase. We evaluate our collaboration using the well-known Evolutionary Calibrator (Evoca). Moreover, we tune two different algorithms: the Ant Knapsack algorithm, using hard instances of the Multidimensional Knapsack Problem, and a Genetic Algorithm for solving landscapes that follow the NK model (N components and degree K). Evoca obtains promising results using our novel strategy, consuming less computational resources.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Rojas-Morales, Nicolas | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Riff Rojas, Maria-Cristina | Mujer |
Universidad Técnica Federico Santa María - Chile
|
| 3 | IEEE | Corporación |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Técnica Federico Santa María |
| UTFSM Project |