Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1155/2018/6497340 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Liao, Run-Fa | - |
Univ Elect Sci & Technol China - China
University of Electronic Science and Technology of China - China |
| 2 | Wen, Hong | - |
Univ Elect Sci & Technol China - China
University of Electronic Science and Technology of China - China |
| 3 | Wu, Jinsong | - |
Universidad de Chile - Chile
|
| 4 | Song, Huanhuan | - |
Univ Elect Sci & Technol China - China
University of Electronic Science and Technology of China - China |
| 5 | Pan, Fei | - |
Univ Elect Sci & Technol China - China
University of Electronic Science and Technology of China - China |
| 6 | Dong, Lian | - |
Univ Elect Sci & Technol China - China
University of Electronic Science and Technology of China - China |
| Fuente |
|---|
| National Natural Science Foundation of China |
| NSFC |
| National Major RD Program |
| National Major R&D Program |
| Chile CONICYT FONDECYT |
| Chile Conicyt Fondecyt Project |
| Agradecimiento |
|---|
| This research was supported by NSFC (no. 61572114), National Major R&D Program (no. 2018YFB0904905), and Chile Conicyt Fondecyt Project no. 1181809. |
| This research was supported by NSFC (no. 61572114), National Major R&D Program (no. 2018YFB0904905), and Chile Conicyt Fondecyt Project no. 1181809. |