Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1063/5.0106922 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Quantitatively assessing the level of confidence on a test score can be a challenging problem, especially when the available information is based on multiple criteria. A concrete example beyond the usual grading of tests occurs with recommendation letters, where a recommender assigns a score to a candidate, but the reliability of the recommender must be assessed as well. Here, we present a statistical procedure, based on Bayesian inference and Jaynes' maximum entropy principle, that can be used to estimate the most probable and expected score given the available information in the form of a credible interval. Our results may provide insights on how to properly state and analyze problems related to the uncertain evaluation of performance in learning applied to several contexts, beyond the case study of the recommendation letters presented here. Published under an exclusive license by AIP Publishing.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | DAVIS-IRARRAZABAL, SERGIO MICHAEL | Hombre |
Comision Chilena de Energia Nuclear - Chile
Universidad Nacional Andrés Bello - Chile |
| 2 | LOYOLA-CANALES, CLAUDIA CRISTINA | Mujer |
Universidad Nacional Andrés Bello - Chile
|
| 3 | PERALTA-CAMPOSANO, JOAQUIN ANDRES | Hombre |
Universidad Nacional Andrés Bello - Chile
|
| Fuente |
|---|
| Universidad Andrés Bello |
| NLHPC |
| ANID |
| ANID Fondecyt |
| Agencia Nacional de Investigación y Desarrollo |
| FENIX |
| proyecto interno (UNAB) |
| FENIX (UNAB) |
| Agradecimiento |
|---|
| The authors acknowledge financial support from the ANID FONDECYT 1220651 grant. S.D. also acknowledges financial support from the ANID PIA ACT172101 grant. C.L. acknowledges financial support from proyecto interno DI-13-20/REG (UNAB). Computational work was supported by the supercomputing infrastructures of the NLHPC (ECM-02) and FENIX (UNAB). |
| The authors acknowledge financial support from the ANID FONDECYT 1220651 grant. S.D. also acknowledges financial support from the ANID PIA ACT172101 grant. C.L. acknowledges financial support from proyecto interno DI-13-20/REG (UNAB). Computational work was supported by the supercomputing infrastructures of the NLHPC (ECM-02) and FENIX (UNAB). |