Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1140/EPJQT/S40507-022-00154-X | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The field of quantum metrology seeks to apply quantum techniques and/or resources to classical sensing approaches with the goal of enhancing the precision in the estimation of a parameter beyond what can be achieved with classical resources. Theoretically, the fundamental minimum uncertainty in the estimation of a parameter for a given probing state is bounded by the quantum Cramer-Rao bound. From a practical perspective, it is necessary to find physical measurements that can saturate this fundamental limit and to show experimentally that it is possible to perform measurements with the required precision to do so. Here we perform experiments that saturate the quantum Cramer-Rao bound for transmission estimation over a wide range of transmissions when probing the system under study with a continuous wave bright two-mode squeezed state. To properly take into account the imperfections in the generation of the quantum state, we extend our previous theoretical results to incorporate the measured properties of the generated quantum state. For our largest transmission level of 84%, we show a 62% reduction over the optimal classical protocol in the variance in transmission estimation when probing with a bright two-mode squeezed state with -8 dB of intensity-difference squeezing. Given that transmission estimation is an integral part of many sensing protocols, such as plasmonic sensing, spectroscopy, calibration of the quantum efficiency of detectors, etc., the results presented promise to have a significant impact on a number of applications in various fields of research.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Woodworth, Timothy S. S. | Hombre |
UNIV OKLAHOMA - Estados Unidos
University of Oklahoma - Estados Unidos The University of Oklahoma - Estados Unidos |
| 2 | Hermann-Avigliano, C. | Mujer |
Universidad de Chile - Chile
Millennium Inst Res Opt MIRO - Chile Instituto Milenio de Investigación en Óptica - Chile |
| 3 | Chan, Kam Wai Clifford | Hombre |
OAM Photon LLC - Estados Unidos
OAM Photonics LLC - Estados Unidos |
| 4 | Marino, Alberto M. M. | Hombre |
UNIV OKLAHOMA - Estados Unidos
Oak Ridge Natl Lab - Estados Unidos University of Oklahoma - Estados Unidos Oak Ridge National Laboratory - Estados Unidos The University of Oklahoma - Estados Unidos |
| Fuente |
|---|
| FONDECYT |
| CONICYT-PAI |
| National Science Foundation |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| U.S. Department of Energy |
| W. M. Keck Foundation |
| National Science Foundation (NSF) |
| Office of Science |
| US Department of Energy, Office of Science |
| Agencia Nacional de Investigación y Desarrollo |
| ANID-Millennium Science Initiative Program |
| Quantum Science Center |
| National Quantum Information Science Research Centers |
| Agradecimiento |
|---|
| This work was supported by the W. M. Keck Foundation and by the National Science Foundation (NSF) (Grant No. PHYS-1752938). CHA acknowledges support from Fondecyt Grant No. 11190078, and Conicyt-PAI grant 77180003, and ANID-Millennium Science Initiative Program - ICN17-012. AMM acknowledges support from the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Science Center. |
| This work was supported by the W. M. Keck Foundation and by the National Science Foundation (NSF) (Grant No. PHYS-1752938). CHA acknowledges support from Fondecyt Grant No. 11190078, and Conicyt-PAI grant 77180003, and ANID – Millennium Science Initiative Program – ICN17-012. AMM acknowledges support from the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Science Center. |