Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1080/03081087.2022.2159306 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
An n-by-n real symmetric matrix H=[h(i,j)] is said to be a Hankel matrix if h(i,j)=h(i-1,j+1), for each i=2,...,n and j=1,...,n-1. The symmetric nonnegative inverse eigenvalue problem (SNIEP) asks when a lists lambda={lambda(1), ... ,lambda(n)} of real numbers is the spectrum of an n-by-n symmetric nonnegative matrix H. In this paper, we search for conditions on the list lambda={lambda 1, ....,lambda(n)} for the matrix H to be Hankel. For n = 3, sufficient conditions are established. In particular, a necessary and sufficient condition is obtained if lambda is a list of three nonnegative numbers. Also, if sigma(n )(i=1)lambda(i)=0, we give conditions for realizability by a Hankel matrix. Finally, we present a special type of list that can serve as the spectrum of a Hankel nonnegative matrix with positive trace. Several of our results are constructive and provide a Hankel realizing matrix.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | JULIO-TORRES, ANA ISABEL | Mujer |
Universidad Católica del Norte - Chile
|
| 2 | DIAZ-MARTINEZ, ROBERTO CARLOS | Hombre |
Universidad Católica del Norte - Chile
|
| 3 | Herrera, Timoteo | Hombre |
Universidad Católica del Norte - Chile
|
| Fuente |
|---|
| Universidad Católica del Norte |
| Agencia Nacional de Investigacion y Desarrollo (ANID) |
| Agencia Nacional de Investigación y Desarrollo |
| NUCLEO 6 UCN , Chile |
| Subdirección de Capital Humano/Doctorado Nacional/2022 |
| Agradecimiento |
|---|
| The research of A. I. Julio was supported by Universidad Catolica del Norte [grant number VRIDT 036-2020], NUCLEO 6 UCN [grant number VRIDT 083-2020], Chile. The research of T. Herrera was supported by Agencia Nacional de Investigacion y Desarrollo (ANID)-Subdireccion de Capital Humano/Doctorado Nacional/2022 [grant number 21221867], Chile. |
| The research of A. I. Julio was supported by Universidad Católica del Norte [grant number VRIDT 036-2020], NÚCLEO 6 UCN [grant number VRIDT 083-2020], Chile. The research of T. Herrera was supported by Agencia Nacional de Investigación y Desarrollo (ANID)-Subdirección de Capital Humano/Doctorado Nacional/2022 [grant number 21221867], Chile. The authors express their thanks to the referee for the valuable comments which led to an improved version of the paper. |