Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



In search of diverse and connected teams: A computational approach to assemble diverse teams based on members' social networks
Indexado
WoS WOS:000924711500019
Scopus SCOPUS_ID:85141526784
DOI 10.1371/JOURNAL.PONE.0276061
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Previous research shows that teams with diverse backgrounds and skills can outperform homogeneous teams. However, people often prefer to work with others who are similar and familiar to them and fail to assemble teams with high diversity levels. We study the team formation problem by considering a pool of individuals with different skills and characteristics, and a social network that captures the familiarity among these individuals. The goal is to assign all individuals to diverse teams based on their social connections, thereby allowing them to preserve a level of familiarity. We formulate this team formation problem as a multi-objective optimization problem to split members into well-connected and diverse teams within a social network. We implement this problem employing the Non-dominated Sorting Genetic Algorithm II (NSGA-II), which finds team combinations with high familiarity and diversity levels in O(n(2)) time. We tested this algorithm on three empirically collected team formation datasets and against three benchmark algorithms. The experimental results confirm that the proposed algorithm successfully formed teams that have both diversity in member attributes and previous connections between members. We discuss the benefits of using computational approaches to augment team formation and composition.

Revista



Revista ISSN
P Lo S One 1932-6203

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biology
Multidisciplinary Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Gomez-Zara, Diego Hombre UNIV NOTRE DAME - Estados Unidos
Pontificia Universidad Católica de Chile - Chile
University of Notre Dame - Estados Unidos
College of Engineering - Estados Unidos
2 Das, Archan Hombre Carnegie Mellon Univ - Estados Unidos
Carnegie Mellon University - Estados Unidos
School of Computer Science - Estados Unidos
3 Pawlow, Bradley Hombre NORTHWESTERN UNIV - Estados Unidos
Northwestern University - Estados Unidos
Robert R. McCormick School of Engineering and Applied Science - Estados Unidos
4 Contractor, Noshir S. - NORTHWESTERN UNIV - Estados Unidos
Northwestern University - Estados Unidos
Robert R. McCormick School of Engineering and Applied Science - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
National Institutes of Health
National Institute of Health
National Aeronautics and Space Administration
Directorate for Social, Behavioral and Economic Sciences
Microsoft Research
Microsoft Research (2020 Microsoft Research Dissertation Grant)
2020 Microsoft Research

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This study was supported by the National Institute of Health (1R01GM112938-01, 1R01GM137410-01), the National Aeronautics and Space Administration (80NSSC21K0925), and the National Science Foundation (SMA-1856090) through grants awarded to NC. This study was also supported by the Directorate for Social, Behavioral and Economic Sciences (SES-2021117) and Microsoft Research (2020 Microsoft Research Dissertation Grant) through grants awarded to DG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
This study was supported by the National Institute of Health (1R01GM112938-01, 1R01GM137410-01), the National Aeronautics and Space Administration (80NSSC21K0925), and the National Science Foundation (SMA-1856090) through grants awarded to NC. This study was also supported by the Directorate for Social, Behavioral and Economic Sciences (SES-2021117) and Microsoft Research (2020 Microsoft Research Dissertation Grant) through grants awarded to DG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Muestra la fuente de financiamiento declarada en la publicación.