Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.NONRWA.2022.103703 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A model for the spatio-temporal evolution of three biological species in a food chain model consisting of two competitive preys and one predator with intra-specific competition is considered. Besides diffusing, the predator species moves toward higher concentrations of a chemical substance produced by the prey. The prey, in turn, moves away from high concentrations of a substance secreted by the predators. The resulting reaction-diffusion system consists of three parabolic equations along with three elliptic equations describing the diffusion of the chemical substances. The local existence of nonnegative solutions is proved. Then uniform estimates in Lebesgue spaces are provided. These estimates lead to boundedness and global well-posedness for the system. Numerical simulations are presented and discussed. (c) 2022 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Amorim, Paulo | Hombre |
UNIV FED RIO DE JANEIRO - Brasil
Universidade Federal do Rio de Janeiro - Brasil |
| 2 | Burger, R. | Hombre |
Universidad de Concepción - Chile
|
| 3 | Ordonez, Rafael | Hombre |
Univ Popular Cesar - Colombia
Universidad Popular del Cesar - Colombia |
| 4 | VILLADA-OSORIO, LUIS MIGUEL | Hombre |
Universidad del Bío Bío - Chile
|
| Fuente |
|---|
| FONDECYT |
| CNPq |
| Anillo |
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondecyt Project |
| Centro de Modelamiento Matematico |
| ANID-Chile |
| project CRHIAM |
| ANID-Chile through the projects Centro de Modelamiento Matematico |
| project MATH-Amsud "NOTION: NOn-local conservaTION laws for engineering, biological and epidemiological applications: theoretical and numerical" |
| Agradecimiento |
|---|
| RB and LMV are supported by project MATH-Amsud 22-MATH-05 "NOTION: NOn-local conservaTION laws for engineering, biological and epidemiological applications: theoretical and numerical" and by ANID-Chile through the projects Centro de Modelamiento Matematico (ACE210010 and FB210005, BASAL funds for centers of excellence) and Anillo ANID/PIA/ACT210030. In addition, LMV is supported by Fondecyt project 1181511 and RB by projects Fondecyt 1210610 and CRHIAM, ANID/FONDAP/15130015. PA was partially supported by CNPq grant no. 308101/2019-7. |
| RB and LMV are supported by project MATH-Amsud 22-MATH-05 “NOTION: NOn-local conservaTION laws for engineering, biological and epidemiological applications: theoretical and numerical” and by ANID-Chile through the projects Centro de Modelamiento Matemático ( ACE210010 and FB210005 , BASAL funds for centers of excellence) and Anillo ANID/PIA/ACT210030 . In addition, LMV is supported by Fondecyt project 1181511 and RB by projects Fondecyt 1210610 and CRHIAM , ANID/FONDAP/15130015 . PA was partially supported by CNPq grant no. 308101/2019-7 . |