Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAMWA.2022.11.009 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In the seminal paper of Bank and Weiser (1985) [17] a new a posteriori estimator was introduced. This estimator requires the solution of a local Neumann problem on every cell of the finite element mesh. Despite the promise of Bank-Weiser type estimators, namely locality, computational efficiency, and asymptotic sharpness, they have seen little use in practical computational problems. The focus of this contribution is to describe a novel algorithmic approach to constructing hierarchical estimators of the Bank-Weiser type that is designed for implementation in a modern high-level finite element software with automatic code generation capabilities. We show how to use the estimator to drive (goal-oriented) adaptive mesh refinement for diverse Poisson problems and for mixed approximations of the nearly-incompressible elasticity problems. We provide comparisons with various other used estimators. Two open source implementations in the DOLFIN and DOLFINx solvers of the FEniCS Project are provided as supplementary material.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bulle, Raphaël | Hombre |
Univ Luxembourg - Luxemburgo
University of Luxembourg - Luxemburgo |
| 2 | Hale, J. S. | Hombre |
Univ Luxembourg - Luxemburgo
University of Luxembourg - Luxemburgo |
| 3 | Lozinski, Alexei | Hombre |
Univ Bourgogne Franche Comte - Francia
Laboratoire de Mathématiques de Besançon (LmB) - Francia |
| 4 | Bulle, Raphaël | Hombre |
Univ Luxembourg - Luxemburgo
University of Luxembourg - Luxemburgo |
| 5 | Chouly, F. | Hombre |
Univ Bourgogne Franche Comte - Francia
Universidad de Chile - Chile IRL 2807 CNRS - Chile Universidad de Concepción - Chile Institut de Mathématiques de Bourgogne - Francia |
| Fuente |
|---|
| European Union |
| Horizon 2020 |
| University of Luxembourg |
| Université du Luxembourg |
| EIPHI Graduate School |
| Center for Mathematical Modeling |
| EIPHI |
| I-Site BFC project NAANoD |
| I-Site BFC |
| Agradecimiento |
|---|
| R.B. would like to acknowledge the support of the ASSIST research project of the University of Luxembourg. This publication has been prepared in the framework of the DRIVEN project funded by the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No. 811099. F.C.'s work is partially supported by the I-Site BFC project NAANoD and the EIPHI Graduate School (contract ANR-17-EURE-0002). F.C. is grateful of the Center for Mathematical Modeling grant FB20005. |
| Funding: R.B. would like to acknowledge the support of the ASSIST research project of the University of Luxembourg . This publication has been prepared in the framework of the DRIVEN project funded by the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No. 811099 . F.C.'s work is partially supported by the I-Site BFC project NAANoD and the EIPHI Graduate School (contract ANR-17-EURE-0002 ). F.C. is grateful of the Center for Mathematical Modeling grant FB20005 . |