Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Apple orchard production estimation using deep learning strategies: A comparison of tracking-by-detection algorithms
Indexado
WoS WOS:000911041300001
Scopus SCOPUS_ID:85144398919
DOI 10.1016/J.COMPAG.2022.107513
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The automated detection and counting of fruit in tree canopies is a key component of yield estimation systems, which are indispensable for the precision management of modern orchards. Detection and counting tasks in agricultural environments are not trivial because of challenges such as characteristics of the tree canopies, occlusion caused by leaves and the lighting conditions, among other factors. With the aim of identifying which algorithm is more suitable for yield estimation, we present a comprehensive comparison of tracking-by-detection algorithms, applied to apple counting. The tracking strategies evaluated were Kalman Filter, Kernelized Correlation Filter, Simple Online Real-Time Tracking, Multi Hypothesis Tracking, and Deep Simple Online Real-Time Tracking. The five tracking algorithms were further assessed on two novel databases constructed for this research in Multiple Object Tracking MOT format. After a sensitivity analysis of the trackers, the results show that the most robust approach is the Multiple Hypothesis Tracking, followed by the Deep Simple Online Realtime (DeepSORT), with a MOT accuracy of 97.00% and 93.00%, respectively, when having perfect detection. However, in an application case including a deep learning-based detection stage, the DeepSORT tracker obtains the lowest counting error, which on average for all videos is 20.07% and 31.52% when using YoloV5 and Faster R-CNN as detection strategies. Statistically similar results were obtained using the Kalman Filter with a counting error of 20.5% and 31.9% when detecting fruit with YoloV5 and Faster R-CNN.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Agriculture, Multidisciplinary
Computer Science, Interdisciplinary Applications
Scopus
Agronomy And Crop Science
Computer Science Applications
Horticulture
Forestry
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Villacres, Juan Hombre UNIV CALIF DAVIS - Estados Unidos
University of California, Davis - Estados Unidos
2 Viscaino, Michelle Mujer Universidad Técnica Federico Santa María - Chile
3 DELPIANO-COSTABAL, JOSE FRANCISCO Hombre Universidad de Los Andes, Chile - Chile
4 Vougioukas, Stavros Hombre UNIV CALIF DAVIS - Estados Unidos
University of California, Davis - Estados Unidos
5 AUAT-CHEEIN, FERNANDO ALFREDO Hombre Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Universidad Técnica Federico Santa María
AC3E
FONDECYT grant
Advanced Center for Electrical and Electronic Engineering (AC3E)
Agencia Nacional de Investigación y Desarrollo
ANID PFCHA/DOCTORADO NACIONAL
ANID Basal Project
Universidad Tcnica Federico Santa Maria

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to thank to the Advanced Center for Electrical and Electronic Engineering (AC3E), ANID Basal project FB0008 and FONDECYT grant 1201319. Authors would also like to thank to Universidad Tcnica Federico Santa Maria, and ANID PFCHA/Doctorado Nacional/2020-21200684.
The authors would like to thank to the Advanced Center for Electrical and Electronic Engineering (AC3E), ANID Basal project FB0008 and FONDECYT grant 1201319. Authors would also like to thank to Universidad Técnica Federico Santa María, and ANID PFCHA/Doctorado Nacional/2020-21200684.
The authors would like to thank to the Advanced Center for Electrical and Electronic Engineering (AC3E), ANID Basal project FB0008 and FONDECYT grant 1201319. Authors would also like to thank to Universidad Técnica Federico Santa María, and ANID PFCHA/Doctorado Nacional/2020-21200684.

Muestra la fuente de financiamiento declarada en la publicación.