Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1155/2018/8395193 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The progress of metaheuristic techniques, big data, and the Internet of things generates opportunities to performance improvements in complex industrial systems. This article explores the application of Big Data techniques in the implementation of metaheuristic algorithms with the purpose of applying it to decision-making in industrial processes. This exploration intends to evaluate the quality of the results and convergence times of the algorithm under different conditions in the number of solutions and the processing capacity. Under what conditions can we obtain acceptable results in an adequate number of iterations? In this article, we propose a cuckoo search binary algorithm using the MapReduce programming paradigm implemented in the Apache Spark tool. The algorithm is applied to different instances of the crew scheduling problem. The experiments show that the conditions for obtaining suitable results and iterations are specific to each problem and are not always satisfactory.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | GARCIA-CONEJEROS, JOSE ANTONIO | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 2 | ALTIMIRAS-GONZALEZ, FRANCISCO JAVIER | Hombre |
Telefon Invest & Desarrollo - Chile
Universidad Adolfo Ibáñez - Chile Centro de Investigación y Desarrollo Telefónica - Chile |
| 3 | Peña, Alvaro | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 4 | ASTORGA-SOLARI, GINO NICOLAS | Hombre |
Universidad de Valparaíso - Chile
|
| 5 | PEREDO-ANDRADE, OSCAR FRANCISCO | Hombre |
Telefon Invest & Desarrollo - Chile
Centro de Investigación y Desarrollo Telefónica - Chile |