Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10107-023-01942-8 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The well known constant rank constraint qualification [Math. Program. Study 21:110–126, 1984] introduced by Janin for nonlinear programming has been recently extended to a conic context by exploiting the eigenvector structure of the problem. In this paper we propose a more general and geometric approach for defining a new extension of this condition to the conic context. The main advantage of our approach is that we are able to recast the strong second-order properties of the constant rank condition in a conic context. In particular, we obtain a second-order necessary optimality condition that is stronger than the classical one obtained under Robinson’s constraint qualification, in the sense that it holds for every Lagrange multiplier, even though our condition is independent of Robinson’s condition.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Andreani, Roberto | Hombre |
Universidade Estadual de Campinas - Brasil
UNIV ESTADUAL CAMPINAS - Brasil |
| 2 | Haeser, G. | Hombre |
Universidade de São Paulo - Brasil
UNIV SAO PAULO - Brasil |
| 3 | Mito, Leonardo M. | Hombre |
Universidade de São Paulo - Brasil
UNIV SAO PAULO - Brasil |
| 4 | RAMIREZ-ESTAY, HECTOR | Hombre |
Universidad de Chile - Chile
|
| 5 | Silveira, T. P. | - |
Universidade de São Paulo - Brasil
UNIV SAO PAULO - Brasil |
| Fuente |
|---|
| FONDECYT |
| CNPq |
| FAPESP |
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fundação de Amparo à Pesquisa do Estado de São Paulo |
| CEPID-CEMEAI |
| Barcelona Supercomputing Center |
| PRONEX-CNPq/FAPERJ |
| CEPID-CeMEAI (FAPESP) |
| BASAL funds for center of excellence, from ANID (Chile) |
| Centro de Modelamiento Matematico (CMM), from ANID (Chile) |
| Agradecimiento |
|---|
| This work has received financial support from CEPID-CeMEAI (FAPESP 2013/07375-0), FAPESP (grants 2018/24293-0, 2017/18308-2, 2017/17840-2, 2017/12187-9, and 2020/00130-5), CNPq (grants 301888/2017-5, 303427/2018-3, and 404656/2018-8), PRONEX - CNPq/FAPERJ (grant E-26/010.001247/2016), and FONDECYT grant 1201982 and Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for center of excellence, both from ANID (Chile). |
| This work has received financial support from CEPID-CeMEAI (FAPESP 2013/07375-0), FAPESP (grants 2018/24293-0, 2017/18308-2, 2017/17840-2, 2017/12187-9, and 2020/00130-5), CNPq (grants 301888/2017-5, 303427/2018-3, and 404656/2018-8), PRONEX-CNPq/FAPERJ (grant E-26/010.001247/2016), and FONDECYT grant 1201982 and Centro de Modelamiento Matematico (CMM), ACE210010 and FB210005, BASAL funds for center of excellence, both from ANID (Chile). |