Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Informative regularization for a multi-layer perceptron RR Lyrae classifier under data shift
Indexado
WoS WOS:000954527000001
Scopus SCOPUS_ID:85150918905
DOI 10.1016/J.ASCOM.2023.100694
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent decades, machine learning has provided valuable models and algorithms for processing and extracting knowledge from time-series surveys. Different classifiers have been proposed and performed to an excellent standard. Nevertheless, few papers have tackled the data shift problem in labeled training sets, which occurs when there is a mismatch between the data distribution in the training set and the testing set. This drawback can damage the prediction performance in unseen data. Consequently, we propose a scalable and easily adaptable approach based on an informative regularization and an ad-hoc training procedure to mitigate the shift problem during the training of a multi-layer perceptron for RR Lyrae classification. We collect ranges for characteristic features to construct a symbolic representation of prior knowledge, which was used to model the informative regularizer component. Simultaneously, we design a two-step back-propagation algorithm to integrate this knowledge into the neural network, whereby one step is applied in each epoch to minimize classification error, while another is applied to ensure regularization. Our algorithm defines a subset of parameters (a mask) for each loss function. This approach handles the forgetting effect, which stems from a trade-off between these loss functions (learning from data versus learning expert knowledge) during training. Experiments were conducted using recently proposed shifted benchmark sets for RR Lyrae stars, outperforming baseline models by up to 3% through a more reliable classifier. Our method provides a new path to incorporate knowledge from characteristic features into artificial neural networks to manage the underlying data shift problem.

Revista



Revista ISSN
Astronomy And Computing 2213-1337

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Astronomy & Astrophysics
Scopus
Computer Science Applications
Astronomy And Astrophysics
Space And Planetary Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Perez-Galarce, Francisco Hombre Pontificia Universidad Católica de Chile - Chile
2 Pichara, Karim E. Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio de Astrofísica - Chile
3 Huijse, P. Hombre Instituto Milenio de Astrofísica - Chile
Universidad Austral de Chile - Chile
4 Catelan, Marcio Hombre Instituto Milenio de Astrofísica - Chile
Pontificia Universidad Católica de Chile - Chile
5 MERY-QUIROZ, DOMINGO Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Proyecto Basal
ANID
Agencia Nacional de Investigación y Desarrollo
ANID's Millennium Science Initiative
Agenția Națională pentru Cercetare și Dezvoltare
CENIA
National Center for Artificial Intelligence
ANID, through FONDECYT
National Center for Artificial Intelligence (CENIA) Proyecto Basal
National Agency for Research and Development (ANID) , through the FONDECYT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to acknowledge the support from the National Agency for Research and Development (ANID) , through the FONDECYT Regular project number 1180054. F. Pérez-Galarce acknowledges support from ANID , through Scholarship Program/ Doctorado Nacional/2017-21171036. P.H. acknowledges support from ANID , through FONDECYT regular 1211374 . Support for M.C. is provided by ANID’s Millennium Science Initiative through grant ICN12_12009 , awarded to the Millennium Institute of Astrophysics (MAS), and by Proyecto Basal FB210003. D. Mery acknowledges support from National Center for Artificial Intelligence (CENIA) Proyecto Basal FB210017.
The authors would like to acknowledge the support from the National Agency for Research and Development (ANID) , through the FONDECYT Regular project number 1180054. F. Perez-Galarce acknowledges support from ANID, through Scholarship Program/Doctorado Nacional/2017-21171036. P.H. acknowledges support from ANID, through FONDECYT regular 1211374. Support for M.C. is provided by ANID's Millennium Science Initiative through grant ICN12_12009, awarded to the Millennium Institute of Astrophysics (MAS) , and by Proyecto Basal FB210003. D. Mery acknowledges support from National Center for Artificial Intelligence (CENIA) Proyecto Basal FB210017.

Muestra la fuente de financiamiento declarada en la publicación.