Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Bounded vorticity for the 3D Ginzburg-Landau model and an isoflux problem
Indexado
WoS WOS:000907276200001
Scopus SCOPUS_ID:85145706873
DOI 10.1112/PLMS.12505
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We consider the full three-dimensional Ginzburg–Landau model of superconductivity with applied magnetic field, in the regime where the intensity of the applied field is close to the ‘first critical field’ (Formula presented.) at which vortex filaments appear, and in the asymptotics of a small inverse Ginzburg–Landau parameter (Formula presented.). This onset of vorticity is directly related to an ‘isoflux problem’ on curves (finding a curve that maximizes the ratio of a magnetic flux by its length), whose study was initiated in [22] and which we continue here. By assuming a nondegeneracy condition for this isoflux problem, which we show holds at least for instance in the case of a ball, we prove that if the intensity of the applied field remains below (Formula presented.), the total vorticity remains bounded independently of (Formula presented.), with vortex lines concentrating near the maximizer of the isoflux problem, thus extending to the three-dimensional setting a two-dimensional result of [28]. We finish by showing an improved estimate on the value of (Formula presented.) in some specific simple geometries.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Mathematics (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Roman, Carlos Hombre Facultad de Matemáticas - Chile
Pontificia Universidad Católica de Chile - Chile
2 Sandier, Etienne Hombre Laboratoire d’Analyse et de Mathématiques Appliquées - Francia
Univ Paris Est Creteil - Francia
Univ Gustave Eiffel - Francia
3 Serfaty, Sylvia Mujer Courant Institute of Mathematical Sciences - Estados Unidos
NYU - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
National Science Foundation
Fondo Nacional de Desarrollo Científico y Tecnológico
NSF
Chilean National Agency for Research and Development (ANID)
Agencia Nacional de Investigación y Desarrollo
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Courant Institute of Mathematical Sciences, New York University
Simons Investigator program

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Carlos Román acknowledges funding from the Chilean National Agency for Research and Development (ANID) through FONDECYT Iniciación Grant 11190130. He wishes to thank the support and kind hospitality of the Courant Institute of Mathematical Sciences and the Paris-Est University, where part of this work was done. Etienne Sandier wishes to thank the kind hospitality of the Max Planck Institute for Mathematics in the Sciences in Leipzig, where part of this work was done. Sylvia Serfaty acknowledges funding from NSF Grant DMS-2000205 and the Simons Investigator program. Finally, the authors wish to thank the anonymous referee for numerous useful comments which helped improve this article.
Carlos Román acknowledges funding from the Chilean National Agency for Research and Development (ANID) through FONDECYT Iniciación Grant 11190130. He wishes to thank the support and kind hospitality of the Courant Institute of Mathematical Sciences and the Paris-Est University, where part of this work was done. Etienne Sandier wishes to thank the kind hospitality of the Max Planck Institute for Mathematics in the Sciences in Leipzig, where part of this work was done. Sylvia Serfaty acknowledges funding from NSF Grant DMS-2000205 and the Simons Investigator program. Finally, the authors wish to thank the anonymous referee for numerous useful comments which helped improve this article.
Chilean National Agency for Research and Development (ANID); FONDECYT, Grant/Award Number: 11190130; NSF, Grant/Award Number: DMS-2000205; Simons Investigator program

Muestra la fuente de financiamiento declarada en la publicación.