Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Reinforcement Learning for UAV control with Policy and Reward Shaping
Indexado
Scopus SCOPUS_ID:85146359310
DOI 10.1109/SCCC57464.2022.10000286
Año 2022
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent years, unmanned aerial vehicle (UAV) related technology has expanded knowledge in the area, bringing to light new problems and challenges that require solutions. Furthermore, because the technology allows processes usually carried out by people to be automated, it is in great demand in industrial sectors. The automation of these vehicles has been addressed in the literature, applying different machine learning strategies. Reinforcement learning (RL) is an automation framework that is frequently used to train autonomous agents. RL is a machine learning paradigm wherein an agent interacts with an environment to solve a given task. However, learning autonomously can be time consuming, computationally expensive, and may not be practical in highly-complex scenarios. Interactive reinforcement learning allows an external trainer to provide advice to an agent while it is learning a task. In this study, we set out to teach an RL agent to control a drone using reward-shaping and policy-shaping techniques simultaneously. Two simulated scenarios were proposed for the training; one without obstacles and one with obstacles. We also studied the influence of each technique. The results show that an agent trained simultaneously with both techniques obtains a lower reward than an agent trained using only a policy-based approach. Nevertheless, the agent achieves lower execution times and less dispersion during training.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Millán-Arias, Cristian Hombre Universidade de Pernambuco - Brasil
2 Contreras, Ruben Hombre Universidad Central de Chile - Chile
3 Cruz, Francisco Hombre Universidad Central de Chile - Chile
UNSW Sydney - Australia
4 Fernandes, Bruno Hombre Universidade de Pernambuco - Brasil

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Central de Chile
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
ACKNOWLEDGMENT This research was partially financed by Universidad Central de Chile under the research project CIP2020013, the Coordenac¸ão de Aperfeic¸oamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Fundac¸ão de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—Brazilian research agencies.

Muestra la fuente de financiamiento declarada en la publicación.