Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Fault Classification on Melamine Faced Panels Using Local Binary Pattern
Indexado
WoS WOS:000922520400038
Scopus SCOPUS_ID:85146424746
DOI 10.1109/SIBGRAPI55357.2022.9991803
Año 2022
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The wood-based industry is the focus of users that require changes towards a clean industry, environmentally friendly and with efficient use of natural resources. Tasks of inspection and quality control are essential in this scenario. In this work, a dataset with samples obtained from near-infrared (NIR) image acquisition is used to evaluate the limits of the local binary pattern (LBP) for quality control of melamine board products. Conventional pattern recognition and convolutional neural network (CNN) approaches are compared concerning their use to classify the most common groups of faults present on the plant for the inspection task. The local binary convolutional neural networks (LBCNN) is used for inspecting, in a CNN inspired by the traditional LBP texture descriptor. The work shows that such a reformulation of the standard LBP is very simple and enables similar results. However, the results present better performance when LBP is combined with another type of feature, even only based on intensity. Similar modifications of standard CNN can be tested to promote the development of new CNN models insensible to texture granularity, image resolution, intensity range, and other variations of the acquired samples.

Revista



Revista ISSN
1530-1834

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 De Sa, Fernando P.G. Hombre Universidade Federal Fluminense - Brasil
Fed Fluminense Univ UFF - Brasil
2 Aguilera, Cristhian - Universidad del Bío Bío - Chile
3 AGUILERA-CARRASCO, CRISTHIAN ALEJANDRO Mujer Universidad del Bío Bío - Chile
University of Lagos - Chile
Univ Lagos - Chile
4 Conci, Aura Mujer Universidade Federal Fluminense - Brasil
Fed Fluminense Univ UFF - Brasil
5 DeCarvalho, BM -
6 Goncalves, LMG -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CAPES
CNPq
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
FAPERJ
CYTED Network "Ibero-American Thematic Network on ICT Applications for Smart Cities"

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
ACKNOWLEDGEMENT We acknowledge to the CYTED Network ”Ibero-American Thematic Network on ICT Applications for Smart Cities”, Grant No.: 518RT0559. F.P.G.S. and A.C. express their gratitude to the Brazilian Agencies FAPERJ, CAPES and CNPq under projects CNE. PRINT and 305416/2018-9, respectively.
We acknowledge to the CYTED Network "Ibero-American Thematic Network on ICT Applications for Smart Cities", Grant No.: 518RT0559. F.P.G.S. and A.C. express their gratitude to the Brazilian Agencies FAPERJ, CAPES and CNPq under projects CNE. PRINT and 305416/2018-9, respectively.

Muestra la fuente de financiamiento declarada en la publicación.