Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S11228-023-00666-3 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present new constraint qualification conditions for nonlinear semidefinite programming that extend some of the constant rank-type conditions from nonlinear programming. As an application of these conditions, we provide a unified global convergence proof of a class of algorithms to stationary points without assuming neither uniqueness of the Lagrange multiplier nor boundedness of the Lagrange multipliers set. This class of algorithms includes, for instance, general forms of augmented Lagrangian, sequential quadratic programming, and interior point methods. In particular, we do not assume boundedness of the dual sequence generated by the algorithm. The weaker sequential condition we present is shown to be strictly weaker than Robinson’s condition while still implying metric subregularity.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Andreani, Roberto | Hombre |
Universidade Estadual de Campinas - Brasil
UNIV ESTADUAL CAMPINAS - Brasil |
| 2 | Haeser, G. | Hombre |
Universidade de São Paulo - Brasil
UNIV SAO PAULO - Brasil |
| 3 | Mito, Leonardo M. | Hombre |
Universidade de São Paulo - Brasil
UNIV SAO PAULO - Brasil |
| 4 | RAMIREZ-ESTAY, HECTOR | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| CNPq |
| FAPESP |
| Fundação de Amparo à Pesquisa do Estado de São Paulo |
| ANID (Fondecyt) |
| Agradecimiento |
|---|
| The authors received financial support from FAPESP (grants 2017/18308-2, 2017/17840-2, and 2018/24293-0), CNPq (grants 301888/2017-5, 303427/2018-3, 404656/2018-8, and 306988/2021-6), and ANID (FONDECYT grant 1201982 and Basal Fund CMM FB210005). |
| The authors received financial support from FAPESP (grants 2017/18308-2, 2017/17840-2, and 2018/24293-0), CNPq (grants 301888/2017-5, 303427/2018-3, 404656/2018-8, and 306988/2021-6), and ANID (FONDECYT grant 1201982 and Basal Fund CMM FB210005) |