Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Predicting no-show appointments in a pediatric hospital in Chile using machine learning
Indexado
WoS WOS:000920983300001
Scopus SCOPUS_ID:85146958799
DOI 10.1007/S10729-022-09626-Z
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The Chilean public health system serves 74% of the country’s population, and 19% of medical appointments are missed on average because of no-shows. The national goal is 15%, which coincides with the average no-show rate reported in the private healthcare system. Our case study, Doctor Luis Calvo Mackenna Hospital, is a public high-complexity pediatric hospital and teaching center in Santiago, Chile. Historically, it has had high no-show rates, up to 29% in certain medical specialties. Using machine learning algorithms to predict no-shows of pediatric patients in terms of demographic, social, and historical variables. To propose and evaluate metrics to assess these models, accounting for the cost-effective impact of possible intervention strategies to reduce no-shows. We analyze the relationship between a no-show and demographic, social, and historical variables, between 2015 and 2018, through the following traditional machine learning algorithms: Random Forest, Logistic Regression, Support Vector Machines, AdaBoost and algorithms to alleviate the problem of class imbalance, such as RUS Boost, Balanced Random Forest, Balanced Bagging and Easy Ensemble. These class imbalances arise from the relatively low number of no-shows to the total number of appointments. Instead of the default thresholds used by each method, we computed alternative ones via the minimization of a weighted average of type I and II errors based on cost-effectiveness criteria. 20.4% of the 395,963 appointments considered presented no-shows, with ophthalmology showing the highest rate among specialties at 29.1%. Patients in the most deprived socioeconomic group according to their insurance type and commune of residence and those in their second infancy had the highest no-show rate. The history of non-attendance is strongly related to future no-shows. An 8-week experimental design measured a decrease in no-shows of 10.3 percentage points when using our reminder strategy compared to a control group. Among the variables analyzed, those related to patients’ historical behavior, the reservation delay from the creation of the appointment, and variables that can be associated with the most disadvantaged socioeconomic group, are the most relevant to predict a no-show. Moreover, the introduction of new cost-effective metrics significantly impacts the validity of our prediction models. Using a prototype to call patients with the highest risk of no-shows resulted in a noticeable decrease in the overall no-show rate.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Health Policy & Services
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 DUNSTAN-ESCUDERO, JOCELYN MARIEL Hombre Universidad de Chile - Chile
Pontificia Universidad Católica de Chile - Chile
2 Villena, Fabian Hombre Universidad de Chile - Chile
3 Hoyos, J. P. - Universidad Nacional de Colombia, Sede de La Paz - Colombia
UNIV NACL COLOMBIA - Colombia
4 RIQUELME-FLORES, VICTOR HUGO Hombre Universidad de Chile - Chile
5 Royer, M. - Hospital Dr. Luis Calvo Mackenna Hospital - Chile
Universidad de Chile - Chile
Hosp Ninos Luis Calvo Mackenna - Chile
6 RAMIREZ-ESTAY, HECTOR Hombre Universidad de Chile - Chile
7 PEYPOUQUET-URBANEJA, JUAN GABRIEL Hombre Rijksuniversiteit Groningen - Países Bajos
Univ Groningen - Países Bajos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondo de Fomento al Desarrollo Científico y Tecnológico
IMFD
Millennium Science Initiative Program
Fondecyt from ANID-Chile
Fondef Grant from ANID-Chile
Center for Mathematical Modeling (CMM) BASAL fund for center of excellence from ANID-Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was partly supported by Fondef Grant ID19I10271, Fondecyt grants 11201250, 1181179 and 1201982, and Center for Mathematical Modeling (CMM) BASAL fund FB210005 for center of excellence, all from ANID-Chile; as well as Millennium Science Initiative Program grants ICN17_002 (IMFD) and ICN2021_004 (iHealth).
This work was partly supported by Fondef Grant ID 19I10271, Fondecyt grants 11201250, 1181179 and 1201982, and Center for Mathematical Modeling (CMM) BASAL fund FB210005 for center of excellence, all from ANID-Chile; as well as Millennium Science Initiative Program grants ICN17_002 (IMFD) and ICN2021_004 (iHealth).

Muestra la fuente de financiamiento declarada en la publicación.