Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Effective sample size for georeferenced and temporally evolving data
Indexado
WoS WOS:000906880400001
Scopus SCOPUS_ID:85146976944
DOI 10.1016/J.SPASTA.2022.100721
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The effective sample size (ESS) measures the number of independent observations within a sample. This quantity has been studied and applied in many branches of statistics in recent years. In particular, it is used in the statistical analysis of spatial data for detecting duplicated observations as a consequence of the spatial correlation that is typically encountered in practice, allowing for subsequent model-informed data reduction procedures. The primary goal of this article is to introduce a space–time ESS, extending the current literature from the purely spatial to the space–time setting. The proposed ESS can be broken down into spatial and temporal margins. Thus, a statistician could perform purely spatial, purely temporal or joint space–time data reductions in such a way that the simultaneous space–time dependency structure is honored. We show that several elementary attributes that have been widely studied for the purely spatial ESS can translate naturally to the space–time context. We also present some results that connect the proposed ESS with the property of non-separability between space and time. After presenting our results, we apply them to a real data set consisting of daily averages of wind speeds in Ireland during 1961–1978. We obtain that, at each meteorological station, the sample size could be reduced by 80%, while maintaining critical statistical information of the data, demonstrating the effectiveness of our proposal.

Revista



Revista ISSN
Spatial Statistics 2211-6753

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geosciences, Multidisciplinary
Statistics & Probability
Mathematics, Interdisciplinary Applications
Remote Sensing
Scopus
Management, Monitoring, Policy And Law
Statistics And Probability
Computers In Earth Sciences
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Alegria, A. Hombre Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Agency for Research and Development of Chile
National Agency for Research and Development of Chile, through grant ANID/FONDECYT/INICIACION

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The Editor and two anonymous reviewers are gratefully acknowledged for their thorough revisions that allow for a considerably improved version of the manuscript. Alfredo Alegría was partially supported by the National Agency for Research and Development of Chile , through grant ANID/FONDECYT/INICIACIÓN/No. 11190686 .
The Editor and two anonymous reviewers are gratefully acknowledged for their thorough revisions that allow for a considerably improved version of the manuscript. Alfredo Alegria was partially supported by the National Agency for Research and Development of Chile, through grant ANID/FONDECYT/INICIACION/No. 11190686.

Muestra la fuente de financiamiento declarada en la publicación.