Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/ICA-ACCA56767.2022.10006220 | ||
| Año | 2022 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper proposes a new method for writer identification based on small fragments of handwritten text randomly obtained from a paragraph. The main contribution of this work is to show that small fragments carry enough biometric information for writer identification. A second contribution is the creation of 2 repositories of images of handwritten text from 50 writers. The first one is made up of 4 text paragraphs of 64 words in high resolution per writer. The second one contains more than 700 thousand fragments of text per writer. Experiments were conducted with different Convolutional Neural Networks, considering the VGG-16, VGG19, InceptionV3, ResNet-50 and MobileNetV2m models. 2 classification schemes were implemented. First, the classification of individual fragments and, second, the classification of groups of fragments. The best results were obtained using groups of fragments, achieving accuracy of 96% on the identification of a text with the same content and of 87% on the identification of the writer considering a text with different content.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Becerra, Guillermo | Hombre |
Universidad Católica del Maule - Chile
|
| 2 | MORA-COFRE, MARCO ANTONIO | Hombre |
Universidad Católica del Maule - Chile
|
| 3 | Aubin, Veronica | Mujer |
Universidad Nacional de La Matanza - Argentina
|
| 4 | Hernandez-Garcia, Ruber | - |
Universidad Católica del Maule - Chile
|