Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



PVEIN-MLELM: a Novel Palm Vein Identification Approach through Multilayer Extreme Learning Machine
Indexado
Scopus SCOPUS_ID:85147089391
DOI 10.1109/ICA-ACCA56767.2022.10006171
Año 2022
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Biometric identification systems play an essential role in multiple application areas, such as banking services, e-government, and public security, among others. Particularly, palm vein recognition is considered an emerging technology from the last decade, avoiding forgery possibilities and presenting high identification reliability and accuracy. State-of-the-art in palm vein recognition has improved its results in recent years from different approaches based on deep learning. Some methods based on convolutional neural networks reported in the literature have achieved high recognition rates in public databases. However, computational simplicity and generalization capability are limited given the small number of samples in the databases. This paper introduces a model called PVEIN-MLELM based on the Multilayer Extreme Learning Machine (ML-ELM) for identifying persons through palm vein images. The ML-ELM algorithm offers advantages in terms of computational simplicity and speed of the training process while maintaining its generalization capability. Experimental results on four public datasets show recognition rates comparable to the state-of-the-art approaches while reducing memory requirements and significantly speeding up computational time.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Zabala-Blanco, David Hombre Universidad Católica del Maule - Chile
2 Hernandez-Garcia, Ruber - Universidad Católica del Maule - Chile
3 Barrientos, Ricardo J. Hombre Universidad Católica del Maule - Chile
4 Ahumada-Garcia, Roberto Hombre Universidad Católica del Maule - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.