Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A New Fast Training Algorithm for Autoencoder Neural Networks based on Extreme Learning Machine
Indexado
Scopus SCOPUS_ID:85147092567
DOI 10.1109/ICA-ACCA56767.2022.10006276
Año 2022
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Autoencoders are neural networks that are characterized by having the same inputs and outputs. This kind of Neural Networks aim to estimate a nonlinear transformation whose parameters allow to represent the input patterns to the network. The Extreme Learning Machine (ELM-AE) Autoencoders have random weights and biases in the hidden layer, and compute the output parameters by solving an overdetermined linear system using the Moore-Penrose Pseudoinverse. ELM-AE training is based on the Fast Iterative Shrinkage-Thresholding (FISTA). In this paper, we propose to improve the convergence speed obtained by FISTA considering the use of two algorithms of the Shrinkage-Thresholding class, namely Greedy FISTA and Linearly-Convergent FISTA. 6 frequently used public machine learning datasets were considered: MNIST, NORB, CIFAR10, UMist, Caltech256, Stanford Cars. Experiments were carried out varying the number of neurons in the hidden layer of the Autoencoders, considering the 3 algorithms, for all the databases. The experimental results showed that Greedy FISTA and Linearly-Convergent FISTA presented higher convergence speed, increasing the speed of ELM-Autoencoder training, maintaining a comparable generalization error between the three Shrinkage-Thresholding algorithms.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Vasquez-Coronel, Jose A. Hombre Universidad Católica del Maule - Chile
2 Mora, Marco Hombre Universidad Católica del Maule - Chile
3 Vilches, Karina Mujer Universidad Católica del Maule - Chile
4 Silva-Pavez, Fabian Hombre Universidad Católica del Maule - Chile
5 Torres-Gonzalez, Italo Hombre Universidad Católica del Maule - Chile
6 Barria-Valdevenito, Pedro Hombre Universidad Católica del Maule - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.